Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 25(1): 7, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635774

ABSTRACT

BACKGROUND: Hypertension is a common comorbidity of osteoarthritis (OA) with known autonomic dysregulation; thus, the autonomic nervous system may provide a shared underlying mechanism. The objective of this study was to examine the role of the autonomic nervous system in a preclinical model of OA and hypertension. METHODS: Experiments were conducted in spontaneously hypertensive rats and a normotensive control strain, including male and female rats. OA was surgically induced via medial meniscus transection with skin incision used as a sham control (n = 7-8/strain/sex/surgery). Tactile sensitivity, anxiety-related behavior, and serum corticosterone were measured at baseline then bi-weekly across 8 weeks. At weeks 9-10, cardiovascular responses to a chemical vagal nerve agonist were determined to indirectly evaluate vagus nerve function. The joint structure was assessed via grading of histological sections. RESULTS: In males, OA resulted in thinner cartilage in both hypertensive (OA vs. non-OA p < 0.001) and normotensive (OA vs. non-OA p < 0.001). Only females with comorbid hypertension and OA displayed thinner cartilage (p = 0.013). Male hypertensive OA animals had increased calcified subchondral bone compared to normotensive OA animals (p = 0.043) while female hypertensive OA animals had increased calcified subchondral bone compared to hypertensive sham animals (p < 0.001). All MCLT+MMT groups developed low-grade synovitis; interestingly, hypertensive OA females had higher synovitis scores than normotensive OA females (p = 0.046). Additionally, hypertension led to larger drops in blood pressure with vagal activation in both OA (hypertensive vs. normotensive p = 0.018) and sham (hypertensive vs. normotensive p < 0.001) male animals. In females, this trend held true only in OA animals (normotensive vs. hypertensive p = 0.005). CONCLUSION: These data provide preliminary evidence that hypertension influences OA progression and encourages further study into the autonomic nervous system as a possible mechanism.


Subject(s)
Cartilage, Articular , Hypertension , Osteoarthritis , Synovitis , Rats , Male , Female , Animals , Osteoarthritis/pathology , Menisci, Tibial , Bone and Bones , Synovitis/pathology , Disease Models, Animal , Cartilage, Articular/pathology
2.
Clin Biomech (Bristol, Avon) ; 100: 105823, 2022 12.
Article in English | MEDLINE | ID: mdl-36427488

ABSTRACT

BACKGROUND: Low back pain is a leading cause of disability and is frequently associated with whole-body vibration exposure in industrial workers and military personnel. While the pathophysiological mechanisms by which whole-body vibration causes low back pain have been studied in vivo, there is little data to inform low back pain diagnosis. Using a rat model of repetitive whole-body vibration followed by recovery, our objective was to determine the effects of vibration frequency on hind paw withdrawal threshold, circulating nerve growth factor concentration, and intervertebral disc degeneration. METHODS: Male Sprague-Dawley rats were vibrated for 30 min at an 8 Hz or 11 Hz frequency every other day for two weeks and then recovered (no vibration) for one week. Von Frey was used to determine hind paw mechanical sensitivity every two days. Serum nerve growth factor concentration was determined every four days. At the three-week endpoint, intervertebral discs were graded histologically for degeneration. FINDINGS: The nerve growth factor concentration increased threefold in the 8 Hz group and twofold in the 11 Hz group. The nerve growth factor concentration did not return to baseline by the end of the one-week recovery period for the 8 Hz group. Nerve growth factor serum concentration did not coincide with intervertebral disc degeneration, as no differences in degeneration were observed among groups. Mechanical sensitivity generally decreased over time for all groups, suggesting a habituation (desensitization) effect. INTERPRETATION: This study demonstrates the potential of nerve growth factor as a diagnostic biomarker for low back pain due to whole-body vibration.


Subject(s)
Intervertebral Disc Degeneration , Low Back Pain , Nerve Growth Factors , Vibration , Animals , Male , Rats , Intervertebral Disc Degeneration/blood , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/diagnosis , Low Back Pain/blood , Low Back Pain/diagnosis , Low Back Pain/etiology , Nerve Growth Factors/blood , Rats, Sprague-Dawley , Vibration/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...