Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Nutr Food Res ; 63(7): e1801012, 2019 04.
Article in English | MEDLINE | ID: mdl-30659764

ABSTRACT

SCOPE: Resistant starch (RS) is utilized by Gram-negative Bacteroidetes through a starch utilization system (Sus), which requires physical attachment of the bacteria to the substrate. Gram-positive Firmicutes, which include butyrate producers, utilize RS by other mechanisms, such as amylosomes and secreted amylases/glucoamylases. It has been previously shown that fabricated RS [alginate-based starch-entrapped microspheres (SM)] increases butyrate in in vitro human fecal fermentation and was slow fermenting. It has been hypothesized that in vivo SM would disfavor Bacteroidetes and promote Firmicutes, leading to an increase in butyrate production. METHODS AND RESULTS: A C57BL/6J mouse model is used to test type 2 RS (RS2, raw potato) and SM for SCFAs and fecal microbial community structure. Feeding SM for 2 weeks results in 2.4 times higher mol% butyrate in the mouse distal gut than RS2. SM reduces relative abundance of Bacteroidetes and increases Firmicutes in fecal samples at the end of the 2-week feeding. This phylum-level taxonomic shift is not observed in animals fed RS2. CONCLUSION: Through an approach to understand bacterial requirements related to starch utilization, a designed fiber type favors butyrogenic Firmicutes bacteria and provides higher mol% butyrate in the distal gut with potential benefit as an anti-inflammatory agent and to improve gut barrier function.


Subject(s)
Butyrates/metabolism , Colon/metabolism , Firmicutes/physiology , Gastrointestinal Microbiome/physiology , Starch/pharmacokinetics , Animals , Fatty Acids/analysis , Fatty Acids/metabolism , Fatty Acids, Volatile/metabolism , Feces/microbiology , Gastrointestinal Microbiome/genetics , Male , Mice, Inbred C57BL , Solanum tuberosum , Starch/chemistry
2.
Food Funct ; 7(12): 4935-4943, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27841429

ABSTRACT

Previous work in our laboratory showed that alkali-solubilized corn arabinoxylan (CAX) has a slow initial, but later complete, in vitro human fecal fermentation. CAX and a moderately high molecular weight hydrolysate (CH) were propiogenic, and produced low levels of butyrate. Here, we show that oxalic acid-generated hydrolysates from CAX, which include a large xylooligosaccharide, and free arabinose fractions, increased short chain fatty acid (SCFA) production, which included relatively high levels of both propionate and butyrate, an unusual SCFA combination. Hydrolytic degradation of CAX by acid hydrolysis (0.05 M oxalic acid at 100 °C for 2 h) and subsequent graded ethanol precipitations were used to obtain mixtures with different molecular weight ranges. Ethanol-precipitated fractions (F 0-65%, F 65-75%, F 75-85%) were mostly lower than 100 kDa and F > 85% was composed of monosaccharides and oligosaccharides of DP 2-8. Oxalic acid treatment caused the removal of all single arabinose unit branch chains and some di/trisaccharide branch chains, producing lightly substituted xylan backbone fragments, most of which were in the oligosaccharide (DP < 10) size range. In vitro human fecal fermentation analyses showed all oxalic acid-hydrolysate fractions were slower fermenting than fructooligosaccharides (FOS), but produced similar or higher amounts of total SCFAs. Butyrate production in two hydrolyzate fractions was double that of CH, while propionate levels remained relatively high.


Subject(s)
Feces/chemistry , Oxalic Acid/chemistry , Xylans/chemistry , Zea mays/chemistry , Animals , Butyric Acid , Fermentation , Food Handling , Humans , Hydrogen-Ion Concentration , Propionates
3.
Carbohydr Polym ; 130: 191-7, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26076616

ABSTRACT

Most soluble dietary fibers ferment rapidly in the proximal colon, potentially causing discomfort and poor tolerability. Alkali-extracted arabinoxylan isolates from corn, wheat, rice and sorghum brans were prepared, through hydrolysis (except sorghum) and ethanol fractionation, to have a broad range of initial fermentation rates, and their linkage patterns were determined to understand structural aspects related to slow fermentation rate. They were all highly branched polymers with degree of substitution greater than 64%. There was no relationship of molecular mass, arabinose:xylose ratio, or degree of substitution to fermentation rate patterns. Slow fermenting wheat and corn arabinoxylans had much higher amount of terminal xylose in branches than fast fermenting rice and sorghum arabinoxylans. The slowest fermenting wheat arabinoxylan additionally contained a complex trisaccharide side chain with two arabinoses linked at the O-2 and O-3 positions of an arabinose that is O-2 linked to the xylan backbone. Structural features were proposed for tolerable slowly fermentable arabinoxylan with possible beneficial fermentation function into the distal colon.


Subject(s)
Dietary Fiber/analysis , Feces/chemistry , Feces/microbiology , Fermentation , Microbiota , Xylans/chemistry , Humans , Hydrolysis , In Vitro Techniques , Oryza/chemistry , Triticum/chemistry , Zea mays/chemistry
4.
J Food Sci ; 77(1): H23-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22132933

ABSTRACT

UNLABELLED: In in vitro batch fermentations, both alkali-extractable corn arabinoxylan (CAX) and its xylanase-hydrolyzate (CH) were utilized by human fecal microbiota and produced similar short chain fatty acid (SCFA) contents and desirable long fermentation profiles with low initial gas production. Fortification of these arabinoxylans into processed foods would contribute desirable dietary fiber benefits to humans. Heat and pH stability, as well as viscosity behavior of CAX and CH were investigated. Size exclusion chromatography was used to analyze the molecular size distribution after treatment at different pH's and heating temperatures for different time periods. Treated under boiling and pressure cooking conditions at pH 3, CAX was degraded to a smaller molecular size, whereas the molecular size of the CH showed only a minor decrease. CAX and CH were mostly stable at neutral pH, except when CAX was treated under pressure for 60 min that slightly lowered molecular size. At 37 °C, neither CAX nor CH was adversely affected by treatment at low or neutral pH. The viscosities of solutions containing 5% and 10% of CAX were 48.7 and 637.0 mPa.s, respectively that were higher than those of solutions containing 5% and 10% of its hydrolyzate at shear rate 1 s⁻¹. The CAX solutions showed Newtonian flow behavior, whereas shear-thinning behavior was observed in CH solutions. In conclusion, the hydrolyzate of CAX has potential to be used in high fiber drinks due to its favorable fermentation properties, higher pH and heat stability, lower and shear-thinning viscosity, and lighter color than the native CAX. PRACTICAL APPLICATION: Arabinoxylan extracted by an alkali from corn bran is a soluble fiber with a desirable low initial and extended fermentation property. Corn arabinoxylan hydrolyzate using an endoxylanase was much more stable at different levels of acidity and heat than the native arabinoxylan, and showed lower solution viscosity and shear-thinning property that indicates its potential as an alternative functional dietary fiber for the beverage industry.


Subject(s)
Dietary Fiber/analysis , Prebiotics/analysis , Xylans/chemistry , Xylans/metabolism , Xylosidases/metabolism , Zea mays/chemistry , Color , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Feces/microbiology , Fermentation , Flatulence/prevention & control , Fungal Proteins/metabolism , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Hot Temperature , Humans , Hydrogen-Ion Concentration , Hydrolysis , Molecular Weight , Plant Extracts , Shear Strength , Solubility , Viscosity , Xylans/isolation & purification
5.
J Food Sci ; 76(5): H137-42, 2011.
Article in English | MEDLINE | ID: mdl-22417432

ABSTRACT

UNLABELLED: Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain ß-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain ß-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. PRACTICAL APPLICATION: Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates with a benchmark slow fermenting fiber that we fabricated in an in vitro simulation of the human digestive system. Results show a variety of fermentation profiles only some of which have slow and extended rate of fermentation.


Subject(s)
Dietary Fiber/metabolism , Fatty Acids, Volatile/biosynthesis , Feces/chemistry , Fermentation , Gases/metabolism , Colon/metabolism , Digestive System/metabolism , Humans , Inulin/metabolism , Oligosaccharides/metabolism , Prebiotics , Psyllium/metabolism , Starch/metabolism
6.
Sci Total Environ ; 408(23): 5917-23, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20850169

ABSTRACT

Animal manure is a significant source of environmental pollution and manure dilution in barn cleaning and slurry storage is a common practice in animal agriculture. The effect of swine manure dilution on releases of four pollutant gases was studied in a 30-day experiment using eight manure reactors divided into two groups. One group was treated with swine manure of 6.71% dry matter and another with manure diluted with water to 3.73% dry matter. Ammonia release from the diluted manure was 3.32 mg min(-1)m(-2) and was 71.0% of the 4.67 mg min(-1)m(-2) from the undiluted manure (P<0.01). Because the ammonia release reduction ratio was lower than the manure dilution ratio, dilution could increase the total ammonia emissions from swine manure, especially in lagoons with large liquid surface areas. Carbon dioxide release of 87.3 mg min(-1)m(-2) from the diluted manure was 56.4% of the 154.8 mg min(-1)m(-2) from the undiluted manure (P<0.01). Manure dry matter was an important factor for carbon dioxide release from manure. No differences were observed between the treatments (P>0.05) for both hydrogen sulfide and sulfur dioxide releases. Therefore, dilution could also significantly increase the total releases of hydrogen sulfide and sulfur dioxide to the environment because dilution adds to the total manure volume and usually also increases the total gas release surface area.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Carbon Dioxide/analysis , Hydrogen Sulfide/analysis , Manure , Sulfur Dioxide/analysis , Animals , Swine , Waste Management
7.
8.
J Agric Food Chem ; 58(1): 493-9, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-20000566

ABSTRACT

Human fecal fermentation profiles of maize, rice, and wheat bran and their dietary fiber fractions released by alkaline-hydrogen peroxide treatment (principally arabinoxylan) were obtained with the aim of identifying and characterizing fractions associated with high production of short chain fatty acids and a linear fermentation profile for possible application as a slowly fermentable dietary fiber. The alkali-soluble fraction from maize bran resulted in the highest short chain fatty acid production among all samples tested, and was linear over the 24 h fermentation period. Size-exclusion chromatography and (1)H NMR suggested that higher molecular weight and uniquely substituted arabinose side chains may contribute to these properties. Monosaccharide disappearance data suggest that maize and rice bran arabinoxylans are fermented by a debranching mechanism, while wheat bran arabinoxylans likely contain large unsubstituted xylose regions that are fermented preferentially, followed by poor fermentation of the remaining, highly branched oligosaccharides.


Subject(s)
Dietary Fiber/analysis , Feces/chemistry , Fermentation , Oryza/chemistry , Xylans/chemistry , Zea mays/chemistry , Alkalies/chemistry , Digestion , Fatty Acids, Volatile/analysis , Humans , Intestine, Large/chemistry , Intestine, Large/microbiology , Intestine, Large/physiology , Models, Biological , Solubility , Triticum/chemistry
9.
Mol Nutr Food Res ; 53 Suppl 1: S121-30, 2009 May.
Article in English | MEDLINE | ID: mdl-18925612

ABSTRACT

Previous research has revealed that waxy corn starch which has been entrapped in a matrix of electrostatically cross-linked alginate, shows a slow digestion rate such that much of the starch may reach the colon; thus making this a new type of resistant starch. The purpose of this research was to test the fermentative properties of starch-entrapped microspheres using a batch fecal fermentation method. Fermentation of starch-entrapped microspheres showed significantly lower rates of gas production compared to waxy corn starch, and showed significant increases in total SCFAs during the latter stages of fermentation (24-48 h), whereas waxy corn starch did not. Cooking the starch-entrapped microspheres increased the amount of SCFAs and the molar fraction of butyrate produced during fermentation. Bacterial fingerprinting revealed that uncooked starch-entrapped microspheres have a unique effect on the microbiota that is different from waxy corn starch alone, but cooking causes a shift toward a pattern more closely resembling that of the starch. Starch-entrapped microspheres may deliver slowly fermentable carbohydrate to the colon, with the ability to influence the microbiota. Further human studies are required to determine whether these characteristics occur in vivo.


Subject(s)
Butyrates/metabolism , Feces/microbiology , Fermentation , Microspheres , Starch/administration & dosage , Starch/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/metabolism , Humans , Hydrogen-Ion Concentration
10.
Bioresour Technol ; 86(2): 157-64, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12653281

ABSTRACT

Mathematical models are useful for describing microbial growth, both in natural ecosystems and under research conditions. To this end, a rate expression that accounted for depletion of nutrients was used to derive the logistic function model for batch cultures. Statistical analysis was used to demonstrate the suitability of this model for growth curve data. Two linear forms of the model and two procedures for calculating growth rate constants were derived to facilitate statistical evaluation of growth curves. The procedures for calculating growth rate constants were found to be useful for calculation of growth rate constants at each time point, or for estimating growth rate constants from early growth curve data. The utility of the logistic function model and its alternative forms is discussed with respect to planning experiments, analyzing growth curves for the effects of factors other than nutrient limitation, and developing more complete descriptions of cell proliferation.


Subject(s)
Bacteria , Bioreactors , Models, Theoretical , Fermentation , Nitrogen/metabolism , Phosphorus/metabolism , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...