Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurgery ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634693

ABSTRACT

BACKGROUND AND OBJECTIVES: Dual antiplatelet therapy (DAPT) is necessary to minimize the risk of periprocedural thromboembolic complications associated with aneurysm embolization using pipeline embolization device (PED). We aimed to assess the impact of platelet function testing (PFT) on reducing periprocedural thromboembolic complications associated with PED flow diversion in patients receiving aspirin and clopidogrel. METHODS: Patients with unruptured intracranial aneurysms requiring PED flow diversion were identified from 13 centers for retrospective evaluation. Clinical variables including the results of PFT before treatment, periprocedural DAPT regimen, and intracranial complications occurring within 72 h of embolization were identified. Complication rates were compared between PFT and non-PFT groups. Differences between groups were tested for statistical significance using the Wilcoxon rank sum, Fisher exact, or χ 2 tests. A P -value <.05 was statistically significant. RESULTS: 580 patients underwent PED embolization with 262 patients dichotomized to the PFT group and 318 patients to the non-PFT group. 13.7% of PFT group patients were clopidogrel nonresponders requiring changes in their pre-embolization DAPT regimen. Five percentage of PFT group [2.8%, 8.5%] patients experienced thromboembolic complications vs 1.6% of patients in the non-PFT group [0.6%, 3.8%] ( P = .019). Two (15.4%) PFT group patients with thromboembolic complications experienced permanent neurological disability vs 4 (80%) non-PFT group patients. 3.7% of PFT group patients [1.5%, 8.2%] and 3.5% [1.8%, 6.3%] of non-PFT group patients experienced hemorrhagic intracranial complications ( P > .9). CONCLUSION: Preprocedural PFT before PED treatment of intracranial aneurysms in patients premedicated with an aspirin and clopidogrel DAPT regimen may not be necessary to significantly reduce the risk of procedure-related intracranial complications.

2.
J Comput Assist Tomogr ; 47(5): 753-758, 2023.
Article in English | MEDLINE | ID: mdl-37707405

ABSTRACT

OBJECTIVE: Endoluminal flow diversion reduces blood flow into intracranial aneurysms, promoting thrombosis. Postprocedural dual antiplatelet therapy (DAPT) is necessary for the prevention of thromboembolic complications. The purpose of this study is to therefore assess the impact that the type and duration of DAPT has on aneurysm occlusion rates and iatrogenic complications after flow diversion. METHODS: A retrospective review of a multicenter aneurysm database was performed from 2012 to 2020 to identify unruptured intracranial aneurysms treated with single device flow diversion and ≥12-month follow-up. Clinical and radiologic data were analyzed with aneurysm occlusion as a function of DAPT duration serving as a primary outcome measure. RESULTS: Two hundred five patients underwent flow diversion with a single pipeline embolization device with 12.7% of treated aneurysms remaining nonoccluded during the study period. There were no significant differences in aneurysm morphology or type of DAPT used between occluded and nonoccluded groups. Nonoccluded aneurysms received a longer mean duration of DAPT (9.4 vs 7.1 months, P = 0.016) with a significant effect of DAPT duration on the observed aneurysm occlusion rate (F(2, 202) = 4.2, P = 0.016). There was no significant difference in the rate of complications, including delayed ischemic strokes, observed between patients receiving short (≤6 months) and prolonged duration (>6 months) DAPT (7.9% vs 9.3%, P = 0.76). CONCLUSIONS: After flow diversion, an abbreviated duration of DAPT lasting 6 months may be most appropriate before transitioning to low-dose aspirin monotherapy to promote timely aneurysm occlusion while minimizing thromboembolic complications.


Subject(s)
Embolization, Therapeutic , Intracranial Aneurysm , Humans , Platelet Aggregation Inhibitors/therapeutic use , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/therapy , Treatment Outcome , Retrospective Studies , Aspirin/therapeutic use , Stents
3.
Neuroradiol J ; 35(4): 461-467, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34747246

ABSTRACT

PURPOSE: Flow diverting stents have revolutionized the treatment of intracranial aneurysms through endoluminal reconstruction of the parent vessel. Despite this, certain aneurysms require retreatment. The purpose of this study was to identify clinical and radiologic determinants of aneurysm retreatment following flow diversion. METHODS: A multicenter flow diversion database was evaluated to identify patients presenting with an unruptured, previously untreated aneurysm with a minimum of 12 months' clinical and angiographic follow-up. Univariate and multivariate logistic regression modeling was performed to identify determinants of retreatment. RESULTS: We identified 189 aneurysms treated in 189 patients with a single flow-diverting stent. Mean age was 54 years, and 89% were female. Complete occlusion was achieved in 70.3% and 83.6% of patients at six and 12 months, respectively. Aneurysm retreatment with additional flow-diverting stents occurred in 5.8% of cases. Univariate analysis revealed that dome diameter ≥10 mm (p = 0.012), pre-clinoid internal carotid artery location (p = 0.012), distal > proximal parent vessel diameter (p = 0.042), and later dual antiplatelet therapy (DAPT) discontinuation (p < 0.001) were predictive of retreatment. Multivariate analysis identified discontinuation of DAPT >12 months (p = 0.003) as a strong determinant of retreatment with dome diameter ≥10 mm trending toward statistical significance (p = 0.064). Large aneurysm neck diameter, presence of aneurysm branch vessels, patient age, smoking history, and hypertension were not determinant of retreatment on multivariate analysis. CONCLUSIONS: Prolonged DAPT is the most important determinant of aneurysm retreatment following single-device flow diversion. Abbreviating DAPT duration to only six months should be a consideration in this population, especially for patients with a large aneurysm dome diameter.


Subject(s)
Embolization, Therapeutic , Endovascular Procedures , Intracranial Aneurysm , Female , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors , Retreatment , Retrospective Studies , Stents , Treatment Outcome
4.
Neurotrauma Rep ; 2(1): 391-398, 2021.
Article in English | MEDLINE | ID: mdl-34901938

ABSTRACT

Skull bone graft failure is a potential complication of autologous cranioplasty after decompressive craniectomy (DC). Our objective was to investigate the association of graft size with subsequent bone graft failure after autologous cranioplasty. This single-center retrospective cohort study included patients age ≥18 years who underwent primary autologous cranioplasty between 2010 and 2017. The primary outcome was bone flap failure requiring graft removal. Demographic, clinical, and radiographic factors were recorded; three-dimensional (3D) reconstructive imaging was used to perform accurate measurements. Univariate and multi-variate regression analysis were performed to identify risk factors for the primary outcome. Of the 131 patients who underwent primary autologous cranioplasty, 25 (19.0%) underwent removal of the graft after identification of bone flap necrosis on computed tomography (CT); 16 (64%) of these were culture positive. The mean surface area of craniectomy defect was 128.5 cm2 for patients with bone necrosis and 114.9 cm2 for those without bone necrosis. Linear regression analysis demonstrated that size of craniectomy defect was independently associated with subsequent bone flap failure; logistic regression analysis demonstrated a defect area >125 cm2 was independently associated with failure (odds ratio [OR] 3.29; confidence interval [CI]: 0.249-2.135). Patient- and operation-specific variables were not significant predictors of bone necrosis. Our results showed that increased size of antecedent DC is an independent risk factor for bone flap failure after autologous cranioplasty. Given these findings, clinicians should consider the increased potential of bone flap failure after autologous cranioplasty among patients whose initial DC was >125 cm2.

5.
Neurosurg Focus ; 46(3): E11, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30835680

ABSTRACT

In addition to standard management for the treatment of the acute phase of spinal cord injury (SCI), implementation of novel neuroprotective interventions offers the potential for significant reductions in morbidity and long-term health costs. A better understanding of the systemic changes after SCI could provide insight into mechanisms that lead to secondary injury. An emerging area of research involves the complex interplay of the gut microbiome and the CNS, i.e., a brain-gut axis, or perhaps more appropriately, a CNS-gut axis. This review summarizes the relevant literature relating to the gut microbiome and SCI. Experimental models in stroke and traumatic brain injury demonstrate the bidirectional communication of the CNS to the gut with postinjury dysbiosis, gastrointestinal-associated lymphoid tissue-mediated neuroinflammatory responses, and bacterial-metabolite neurotransmission. Similar findings are being elucidated in SCI as well. Experimental interventions in these areas have shown promise in improving functional outcomes in animal models. This commensal relationship between the human body and its microbiome, particularly the gut microbiome, represents an exciting frontier in experimental medicine.


Subject(s)
Gastrointestinal Microbiome , Spinal Cord Injuries/microbiology , Animals , Bacterial Translocation , Brain Injuries, Traumatic/microbiology , Burns/microbiology , Dysbiosis/complications , Dysbiosis/immunology , Dysbiosis/microbiology , Dysbiosis/therapy , Fecal Microbiota Transplantation , Feedback, Physiological , Humans , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Probiotics/therapeutic use , Rats , Sepsis/etiology , Sepsis/microbiology , Species Specificity , Spinal Cord Injuries/complications , Spinal Cord Injuries/immunology , Stroke/microbiology , Stroke/therapy
6.
Shock ; 52(3): 318-325, 2019 09.
Article in English | MEDLINE | ID: mdl-30335675

ABSTRACT

Traumatic brain injury (TBI) contributes to nearly 1 in 3 injury-related deaths in the United States and accounts for a substantial public health burden and cost. The current literature reports that physiologic responses in the gastrointestinal system after TBI include, but are not limited to, epithelial barrier dysfunction, microbiota changes, and immunologic transformations. Recent evidence suggests gut alterations after TBI modify the homeostasis of the bidirectional gut-microbiota-brain axis, resulting in altered immune responses in the periphery and the brain. This cascade possibly contributes to impaired central nervous system (CNS) healing. Although attention to the gut-brain-microbiota axis has been increasing in the literature, the precise mechanisms underlying the changes observed after TBI remain unclear. The purpose of this review are to describe our current understanding regarding alterations to the gut-microbiota-brain axis after TBI, highlight the pathophysiologic changes involved, and evaluate how these variations modify healing in the CNS or even contribute to secondary injury. We also discuss current investigations into potential medical therapies directed at the gut-microbiota-brain axis, which might offer improved outcomes after TBI.


Subject(s)
Brain Injuries, Traumatic , Brain , Gastrointestinal Microbiome , Gastrointestinal Tract , Brain/pathology , Brain/physiopathology , Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...