Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Adv ; 8(51): eadd1679, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542711

ABSTRACT

The viability of spatially structured populations depends on the abundance and connectivity between subpopulations of breeding adults. Yet, for many species, both are extremely difficult to assess. The speartooth shark is a critically endangered elasmobranch inhabiting tropical rivers with only three adults ever recorded in Australia. Close-kin mark-recapture models, informed by sibling pairs among 226 juveniles, were developed to estimate adult abundance and connectivity in two Australian river systems. Sixty-eight sibling pairs were found, and adult abundance was estimated at 892 for the Adelaide River and 1128 for the Alligator Rivers. We found strong evidence for female philopatry, with most females returning to the same river to pup. Adelaide River males appear largely philopatric, whereas Alligator Rivers males are highly connected to the Adelaide River. From only 4 years of sampling, our results demonstrate that juvenile-only kin pairs can inform simultaneous estimates of abundance and connectivity in a rare and threatened species.

2.
Ecol Lett ; 23(12): 1878-1903, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33073921

ABSTRACT

Ecological systems can often be characterised by changes among a finite set of underlying states pertaining to individuals, populations, communities or entire ecosystems through time. Owing to the inherent difficulty of empirical field studies, ecological state dynamics operating at any level of this hierarchy can often be unobservable or 'hidden'. Ecologists must therefore often contend with incomplete or indirect observations that are somehow related to these underlying processes. By formally disentangling state and observation processes based on simple yet powerful mathematical properties that can be used to describe many ecological phenomena, hidden Markov models (HMMs) can facilitate inferences about complex system state dynamics that might otherwise be intractable. However, HMMs have only recently begun to gain traction within the broader ecological community. We provide a gentle introduction to HMMs, establish some common terminology, review the immense scope of HMMs for applied ecological research and provide a tutorial on implementation and interpretation. By illustrating how practitioners can use a simple conceptual template to customise HMMs for their specific systems of interest, revealing methodological links between existing applications, and highlighting some practical considerations and limitations of these approaches, our goal is to help establish HMMs as a fundamental inferential tool for ecologists.


Subject(s)
Ecology , Ecosystem , Humans , Markov Chains
3.
Mov Ecol ; 8: 31, 2020.
Article in English | MEDLINE | ID: mdl-32695402

ABSTRACT

BACKGROUND: State-space models are important tools for quality control and analysis of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system can aid dynamic ocean management of human activities by informing when animals enter wind farms, shipping lanes, and other intensive use zones. This capability also facilitates the use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations. METHODS: We formulate a continuous-time state-space model to filter the three types of Argos location data (Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos location data. We validate the model by fitting to Argos locations collected from 61 individuals across 7 marine vertebrates and compare model-estimated locations to contemporaneous GPS locations. We then test assumptions that Argos Kalman filter/smoother error ellipses are unbiased, and that Argos Kalman smoother location accuracy cannot be improved by subsequent state-space modelling. RESULTS: Estimation accuracy varied among species with Root Mean Squared Errors usually <5 km and these decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate Argos error ellipse sizes in the north - south direction resulted in more accurate location estimates. Finally, in some cases the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be possible if the smoother is using all available information. CONCLUSIONS: Our model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with accuracy similar to or marginally better than Argos Kalman smoother data that are only available via fee-based reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time Argos data and for manual use by researchers working with historical Argos data.

4.
Sci Rep ; 10(1): 10169, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576876

ABSTRACT

In Australian and New Zealand waters, current knowledge on white shark (Carcharodon carcharias) movement ecology is based on individual tracking studies using relatively small numbers of tags. These studies describe a species that occupies highly variable and complex habitats. However, uncertainty remains as to whether the proposed movement patterns are representative of the wider population. Here, we tagged 103 immature Australasian white sharks (147-350 cm fork length) with both acoustic and satellite transmitters to expand our current knowledge of population linkages, spatiotemporal dynamics and coastal habitats. Eighty-three sharks provided useable data. Based on individual tracking periods of up to 5 years and a total of 2,865 days of tracking data, we were able to characterise complex movement patterns over ~45° of latitude and ~72° of longitude and distinguish regular/recurrent patterns from occasional/exceptional migration events. Shark movements ranged from Papua New Guinea to sub-Antarctic waters and to Western Australia, highlighting connectivity across their entire Australasian range. Results over the 12-year study period yielded a comprehensive characterisation of the movement ecology of immature Australasian white sharks across multiple spatial scales and substantially expanded the body of knowledge available for population assessment and management.


Subject(s)
Animal Migration , Sharks/physiology , Animals , Australia , Ecology , Ecosystem , New Zealand , Population Dynamics
5.
Sci Rep ; 8(1): 14553, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30266923

ABSTRACT

Large scale migrations are a key component of the life history of many marine species. We quantified the annual migration cycle of juvenile southern bluefin tuna (Thunnus maccoyii; SBT) and spatiotemporal variability in this cycle, based on a multi-decadal electronic tagging dataset. Behaviour-switching models allowed for the identification of cohesive areas of residency and classified the temporal sequence of movements within a migration cycle from austral summer foraging grounds in the Great Australian Bight (GAB) to winter foraging grounds in the Indian Ocean and Tasman Sea and back to the GAB. Although specific regions within the Indian Ocean were frequented, individuals did not always return to the same area in consecutive years. Outward migrations from the GAB were typically longer than return migrations back to the GAB. The timing of individual arrivals to the GAB, which may be driven by seasonality in prey availability, was more cohesive than the timing of departures from the GAB, which may be subject to the physiological condition of SBT. A valuable fishery for SBT operates in the GAB, as do a number of scientific research programs designed to monitor SBT for management purposes; thus, understanding SBT migration to and from the area is of high importance to a number of stakeholders.


Subject(s)
Animal Migration , Tuna , Animals , Australia , Ecosystem , Indian Ocean , Population Dynamics , Seasons , Tuna/physiology
6.
Ecol Evol ; 8(14): 7031-7043, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30073065

ABSTRACT

Understanding how, where, and when animals move is a central problem in marine ecology and conservation. Key to improving our knowledge about what drives animal movement is the rising deployment of telemetry devices on a range of free-roaming species. An increasingly popular way of gaining meaningful inference from an animal's recorded movements is the application of hidden Markov models (HMMs), which allow for the identification of latent behavioral states in the movement paths of individuals. However, the use of HMMs to explore the population-level consequences of movement is often limited by model complexity and insufficient sample sizes. Here, we introduce an alternative approach to current practices and provide evidence of how the inclusion of prior information in model structure can simplify the application of HMMs to multiple animal movement paths with two clear benefits: (a) consistent state allocation and (b) increases in effective sample size. To demonstrate the utility of our approach, we apply HMMs and adapted HMMs to over 100 multivariate movement paths consisting of conditionally dependent daily horizontal and vertical movements in two species of demersal fish: Atlantic cod (Gadus morhua; n = 46) and European plaice (Pleuronectes platessa; n = 61). We identify latent states corresponding to two main underlying behaviors: resident and migrating. As our analysis considers a relatively large sample size and states are allocated consistently, we use collective model output to investigate state-dependent spatiotemporal trends at the individual and population levels. In particular, we show how both species shift their movement behaviors on a seasonal basis and demonstrate population space use patterns that are consistent with previous individual-level studies. Tagging studies are increasingly being used to inform stock assessment models, spatial management strategies, and monitoring of marine fish populations. Our approach provides a promising way of adding value to tagging studies because inferences about movement behavior can be gained from a larger proportion of datasets, making tagging studies more relevant to management and more cost-effective.

7.
Sci Rep ; 8(1): 9658, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29942009

ABSTRACT

The effects of climate change constitute a major concern in Arctic waters due to the rapid decline of sea ice, which may strongly alter the movements and habitat availability of Arctic marine mammals. We tracked 98 bowhead whales by satellite over an 11-year period (2001-2011) in Baffin Bay - West Greenland to investigate the environmental drivers (specifically sea surface temperature and sea ice) involved in bowhead whale's movements. Movement patterns differed according to season, with aggregations of whales found at higher latitudes during spring and summer likely in response to sea-ice retreat and increasing sea temperature (SST) facilitated by the warm West Greenland Current. In contrast, the whales moved further south in response to sea temperature decrease during autumn and winter. Statistical models indicated that the whales targeted a narrow range of SSTs from -0.5 to 2 °C. Sea surface temperatures are predicted to undergo a marked increase in the Arctic, which could expose bowhead whales to both thermal stress and altered stratification and vertical transport of water masses. With such profound changes, bowhead whales may face extensive habitat loss. Our results highlight the need for closer investigation and monitoring in order to predict the extent of future distribution changes.


Subject(s)
Animal Migration , Bowhead Whale , Oceans and Seas , Temperature , Animals , Arctic Regions , Climate Change , Ecosystem , Ice Cover , Models, Statistical , Seasons
8.
Ecology ; 98(7): 1932-1944, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28470722

ABSTRACT

The behavior of colony-based marine predators is the focus of much research globally. Large telemetry and tracking data sets have been collected for this group of animals, and are accompanied by many empirical studies that seek to segment tracks in some useful way, as well as theoretical studies of optimal foraging strategies. However, relatively few studies have detailed statistical methods for inferring behaviors in central place foraging trips. In this paper we describe an approach based on hidden Markov models, which splits foraging trips into segments labeled as "outbound", "search", "forage", and "inbound". By structuring the hidden Markov model transition matrix appropriately, the model naturally handles the sequence of behaviors within a foraging trip. Additionally, by structuring the model in this way, we are able to develop realistic simulations from the fitted model. We demonstrate our approach on data from southern elephant seals (Mirounga leonina) tagged on Kerguelen Island in the Southern Ocean. We discuss the differences between our 4-state model and the widely used 2-state model, and the advantages and disadvantages of employing a more complex model.


Subject(s)
Feeding Behavior , Seals, Earless/physiology , Animals , Ecology , Telemetry
9.
Ecology ; 97(7): 1852-1861, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27859170

ABSTRACT

Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory, where the tuna maximizes its energy harvest rate. We assume that foraging efficiency increases with body temperature, so that the vertical migrations are thermoregulatory. The tuna's state is characterized by its mean body temperature and depth, and we solve the optimization problem numerically using dynamic programming. With little calibration of model parameters, our results are consistent with observed data on vertical movement: we find that small tuna should display constant-depth strategies while large tuna should display vertical migrations. The analysis supports the hypothesis that the tuna behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments.


Subject(s)
Feeding Behavior/physiology , Tuna/physiology , Animal Migration , Animals , Body Temperature , Ecology
10.
Ecol Appl ; 25(5): 1244-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26485953

ABSTRACT

Analysis of complex time-series data from ecological system study requires quantitative tools for objective description and classification. These tools must take into account largely ignored problems of bias in manual classification, autocorrelation, and noise. Here we describe a method using existing estimation techniques for multivariate-normal hidden Markov models (HMMs) to develop such a classification. We use high-resolution behavioral data from bio-loggers attached to free-roaming pelagic tuna as an example. Observed patterns are assumed to be generated by an unseen Markov process that switches between several multivariate-normal distributions. Our approach is assessed in two parts. The first uses simulation experiments, from which the ability of the HMM to estimate known parameter values is examined using artificial time series of data consistent with hypotheses about pelagic predator foraging ecology. The second is the application to time series of continuous vertical movement data from yellowfin and bigeye tuna taken from tuna tagging experiments. These data were compressed into summary metrics capturing the variation of patterns in diving behavior and formed into a multivariate time series used to estimate a HMM. Each observation was associated with covariate information incorporating the effect of day and night on behavioral switching. Known parameter values were well recovered by the HMMs in our simulation experiments, resulting in mean correct classification rates of 90-97%, although some variance-covariance parameters were estimated less accurately. HMMs with two distinct behavioral states were selected for every time series of real tuna data, predicting a shallow warm state, which was similar across all individuals, and a deep colder state, which was more variable. Marked diurnal behavioral switching was predicted, consistent with many previous empirical studies on tuna. HMMs provide easily interpretable models for the objective classification of many different types of noisy autocorrelated data, as typically found across a range of ecological systems. Summarizing time-series data into a multivariate assemblage of dimensions relevant to the desired classification provides a means to examine these data in an appropriate behavioral space. We discuss how outputs of these models can be applied to bio-logging and other imperfect behavioral data, providing easily interpretable models for hypothesis testing.


Subject(s)
Behavior, Animal/physiology , Models, Biological , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Tuna/physiology , Animals , Computer Simulation , Markov Chains , Multivariate Analysis
11.
PLoS One ; 9(9): e105507, 2014.
Article in English | MEDLINE | ID: mdl-25181537

ABSTRACT

Off the Ningaloo coast of North West Western Australia, Spangled Emperor Lethrinus nebulosus are among the most highly targeted recreational fish species. The Ningaloo Reef Marine Park comprises an area of 4,566 km2 of which 34% is protected from fishing by 18 no-take sanctuary zones ranging in size from 0.08-44.8 km2. To better understand Spangled Emperor movements and the adequacy of sanctuary zones within the Ningaloo Reef Marine Park for this species, 84 Spangled Emperor of a broad spectrum of maturity and sex were tagged using internal acoustic tags in a range of lagoon and reef slope habitats both inside and adjacent to the Mangrove Bay Sanctuary zone. Kernel Utilisation Distribution (KUD) was calculated for 39 resident individuals that were detected for more than 30 days. There was no relationship with fish size and movement or site fidelity. Average home range (95% KUD) for residents was 8.5±0.5 km2 compared to average sanctuary zone size of 30 km2. Calculated home range was stable over time resulting in resident animals tagged inside the sanctuary zone spending ∼80% of time within the sanctuary boundaries. The number of fish remaining within the array of receivers declined steadily over time and after one year more than 60% of tagged fish had moved outside the sanctuary zone and also beyond the 28 km2 array of receivers. Long term monitoring identified the importance of shifting home range and was essential for understanding overall residency within protected areas and also for identifying spawning related movements. This study indicates that despite exhibiting stable and small home ranges over periods of one to two years, more than half the population of spangled emperor move at scales greater than average sanctuary size within the Ningaloo Reef Marine Park.


Subject(s)
Conservation of Natural Resources , Ecosystem , Perciformes/physiology , Tropical Climate , Animals , Bays , Behavior, Animal , Geography , Homing Behavior , Spatial Analysis , Time Factors , Western Australia
12.
PLoS One ; 7(8): e42093, 2012.
Article in English | MEDLINE | ID: mdl-22900005

ABSTRACT

Data assimilation is a crucial aspect of modern oceanography. It allows the future forecasting and backward smoothing of ocean state from the noisy observations. Statistical methods are employed to perform these tasks and are often based on or related to the Kalman filter. Typically Kalman filters assumes that the locations associated with observations are known with certainty. This is reasonable for typical oceanographic measurement methods. Recently, however an alternative and abundant source of data comes from the deployment of ocean sensors on marine animals. This source of data has some attractive properties: unlike traditional oceanographic collection platforms, it is relatively cheap to collect, plentiful, has multiple scientific uses and users, and samples areas of the ocean that are often difficult of costly to sample. However, inherent uncertainty in the location of the observations is a barrier to full utilisation of animal-borne sensor data in data-assimilation schemes. In this article we examine this issue and suggest a simple approximation to explicitly incorporate the location uncertainty, while staying in the scope of Kalman-filter-like methods. The approximation stems from a Taylor-series approximation to elements of the updating equation.


Subject(s)
Fishes , Oceanography/methods , Oceans and Seas , Algorithms , Animals , Computer Simulation , Satellite Communications
13.
PLoS One ; 7(5): e37216, 2012.
Article in English | MEDLINE | ID: mdl-22629370

ABSTRACT

The harbour seal (Phoca vitulina) is a widespread marine predator in Northern Hemisphere waters. British populations have been subject to rapid declines in recent years. Food supply or inter-specific competition may be implicated but basic ecological data are lacking and there are few studies of harbour seal foraging distribution and habits. In this study, satellite tagging conducted at the major seal haul outs around the British Isles showed both that seal movements were highly variable among individuals and that foraging strategy appears to be specialized within particular regions. We investigated whether these apparent differences could be explained by individual level factors: by modelling measures of trip duration and distance travelled as a function of size, sex and body condition. However, these were not found to be good predictors of foraging trip duration or distance, which instead was best predicted by tagging region, time of year and inter-trip duration. Therefore, we propose that local habitat conditions and the constraints they impose are the major determinants of foraging movements. Specifically the distance to profitable feeding grounds from suitable haul-out locations may dictate foraging strategy and behaviour. Accounting for proximity to productive foraging resources is likely to be an important component of understanding population processes. Despite more extensive offshore movements than expected, there was also marked fidelity to the local haul-out region with limited connectivity between study regions. These empirical observations of regional exchange at short time scales demonstrates the value of large scale electronic tagging programs for robust characterization of at-sea foraging behaviour at a wide spatial scale.


Subject(s)
Appetitive Behavior/physiology , Feeding Behavior/physiology , Phoca/physiology , Satellite Communications , Spatial Behavior/physiology , Animals , Oceans and Seas
14.
PLoS One ; 7(4): e34550, 2012.
Article in English | MEDLINE | ID: mdl-22514636

ABSTRACT

Southern bluefin tuna (SBT) appear to comprise a single stock that is assumed to be both mixed across its distribution and having reproductive adults that are obligate, annual spawners. The putative annual migration cycle of mature SBT consists of dispersed foraging at temperate latitudes with migration to a single spawning ground in the tropical eastern Indian Ocean. Spawning migrations have been assumed to target two peaks in spawning activity; one in September-October and a second in February-March. SBT of sizes comparable to that of individuals observed on the spawning ground were satellite tagged in the Tasman Sea region (2003-2008) and demonstrated both migrations to the spawning grounds and residency in the Tasman Sea region throughout the whole year. All individuals undertaking apparent spawning migrations timed their movements to coincide with the second recognised spawning peak or even later. These observations suggest that SBT may demonstrate substantial flexibility in the scheduling of reproductive events and may even not spawn annually as currently assumed. Further, the population on the spawning grounds may be temporally structured in association with foraging regions. These findings provide new perspectives on bluefin population and spatial dynamics and warrant further investigation and consideration of reproductive schedules in this species.


Subject(s)
Tuna/physiology , Animals , Reproduction/physiology
15.
Ecology ; 91(8): 2373-84, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20836459

ABSTRACT

Foraging theory predicts that mobile predators should target high profitability areas with plentiful resources and minimize time spent moving between these areas. This has led to a focus in recent literature on the identification of "hotspots" important for migratory marine predators, i.e., regions where predators spend disproportionate amounts of time ostensibly due to high prey abundance; and determination of the environmental features characteristic of such areas. We investigated factors predicting foraging success in southern bluefin tuna (SBT; Thunnus maccoyii), by integrating telemetry-based feeding and movement data (n = 19 fish, length to caudal fork [LCF] = 99 +/- 3 cm) with environmental data over the scale of their annual oceanic migrations during 1998-2000. We used widely available statistical modeling techniques, generalized linear models, and generalized linear mixed models, formulated to represent feeding as a Markov process. The results showed increased feeding and predictability of feeding occurs in the coastal waters of southern Australia, providing some evidence that this area represents a fixed foraging "hotspot" for juvenile tuna during the austral summer. However, in oceanic waters southern bluefin tuna did not fit the common model of migration, but rather showed a pattern of relatively high foraging success throughout their migratory range, especially during periods of continuous travel. Interestingly, foraging "coldspots" (prolonged low-feeding periods) as well as "hotspots" were apparent across individual tracks, predicted most strongly by warm ocean temperatures. These results provide a new perspective on the ecology of large-scale feeding migrations within the context of the heterogeneous ocean environment, where the continuous and opportunistic feeding of generalist predators may be more common, particularly in predatory large pelagic fishes, than is currently documented.


Subject(s)
Animal Migration/physiology , Environment , Models, Biological , Predatory Behavior/physiology , Tuna/physiology , Animal Identification Systems , Animals , Seasons , Time Factors
16.
J Anim Ecol ; 78(6): 1113-23, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19563470

ABSTRACT

1. Linking the movement and behaviour of animals to their environment is a central problem in ecology. Through the use of electronic tagging and tracking (ETT), collection of in situ data from free-roaming animals is now commonplace, yet statistical approaches enabling direct relation of movement observations to environmental conditions are still in development. 2. In this study, we examine the hidden Markov model (HMM) for behavioural analysis of tracking data. HMMs allow for prediction of latent behavioural states while directly accounting for the serial dependence prevalent in ETT data. Updating the probability of behavioural switches with tag or remote-sensing data provides a statistical method that links environmental data to behaviour in a direct and integrated manner. 3. It is important to assess the reliability of state categorization over the range of time-series lengths typically collected from field instruments and when movement behaviours are similar between movement states. Simulation with varying lengths of times series data and contrast between average movements within each state was used to test the HMMs ability to estimate movement parameters. 4. To demonstrate the methods in a realistic setting, the HMMs were used to categorize resident and migratory phases and the relationship between movement behaviour and ocean temperature using electronic tagging data from southern bluefin tuna (Thunnus maccoyii). Diagnostic tools to evaluate the suitability of different models and inferential methods for investigating differences in behaviour between individuals are also demonstrated.


Subject(s)
Animal Migration/physiology , Markov Chains , Models, Biological , Animal Identification Systems , Animals , Computer Simulation , Ecosystem , Population Dynamics , Spacecraft , Tuna/physiology
17.
J Anim Ecol ; 77(6): 1223-33, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18657207

ABSTRACT

1. Seasonal long-distance migrations are often expected to be related to resource distribution, and foraging theory predicts that animals should spend more time in areas with relatively richer resources. Yet for highly migratory marine species, data on feeding success are difficult to obtain. We analysed the temporal feeding patterns of wild juvenile southern bluefin tuna from visceral warming patterns recorded by archival tags implanted within the body cavity. 2. Data collected during 1998-2000 totalled 6221 days, with individual time series (n = 19) varying from 141 to 496 days. These data span an annual migration circuit including a coastal summer residency within Australian waters and subsequent migration into the temperate south Indian Ocean. 3. Individual fish recommenced feeding between 5 and 38 days after tagging, and feeding events (n = 5194) were subsequently identified on 76.3 +/- 5.8% of days giving a mean estimated daily intake of 0.75 +/- 0.05 kg. 4. The number of feeding events varied significantly with time of day with the greatest number occurring around dawn (58.2 +/- 8.0%). Night feeding, although rare (5.7 +/- 1.3%), was linked to the full moon quarter. Southern bluefin tuna foraged in ambient water temperatures ranging from 4.9 degrees C to 22.9 degrees C and depths ranging from the surface to 672 m, with different targeting strategies evident between seasons. 5. No clear relationship was found between feeding success and time spent within an area. This was primarily due to high individual variability, with both positive and negative relationships observed at all spatial scales examined (grid ranges of 2 x 2 degrees to 10 x 10 degrees ). Assuming feeding success is proportional to forage density, our data do not support the hypothesis that these predators concentrate their activity in areas of higher resource availability. 6. Multiple-day fasting periods were recorded by most individuals. The majority of these (87.8%) occurred during periods of apparent residency within warmer waters (sea surface temperature > 15 degrees C) at the northern edge of the observed migratory range. These previously undocumented nonfeeding periods may indicate alternative motivations for residency. 7. Our results demonstrate the importance of obtaining information on feeding when interpreting habitat utilization from individual animal tracks.


Subject(s)
Animal Migration/physiology , Feeding Behavior/physiology , Tuna/physiology , Animals , Body Temperature , Ecosystem , Indian Ocean , Seasons , Time Factors
18.
Trends Ecol Evol ; 23(2): 87-94, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18191283

ABSTRACT

Detailed observation of the movement of individual animals offers the potential to understand spatial population processes as the ultimate consequence of individual behaviour, physiological constraints and fine-scale environmental influences. However, movement data from individuals are intrinsically stochastic and often subject to severe observation error. Linking such complex data to dynamical models of movement is a major challenge for animal ecology. Here, we review a statistical approach, state-space modelling, which involves changing how we analyse movement data and draw inferences about the behaviours that shape it. The statistical robustness and predictive ability of state-space models make them the most promising avenue towards a new type of movement ecology that fuses insights from the study of animal behaviour, biogeography and spatial population dynamics.


Subject(s)
Behavior, Animal , Locomotion , Models, Biological , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...