Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 19490, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31862921

ABSTRACT

Composition, density and specimen sizes of pelagic polychaete assemblages were analyzed in the Southern Adriatic Sea. The study was based on finely stratified vertical (0-1100 m) and spatial sampling (17 stations) representing spring conditions. Holoplanktonic polychaetes were distributed in both neritic and pelagic waters, although the highest densities were observed along the Otranto Channel. Analysis of the size frequency distribution revealed a trend with depth only for some species. Spatial distribution of holoplanktonic polychaete density was not related to bottom depth, being the organisms mainly concentrated in the epipelagic layer (0-100 m). The most abundant species showed maximum values below or within the thermocline and within the Deep Chlorophyll Maximum or just above it. Relations between polychaete presence and the underlying oceanographic mechanisms regulating the circulation in the Otranto Channel were discussed. The presence of several non-determined polychaete larvae (e.g. Syllidae) in the pelagic waters at 800-1100 m depths suggests the importance of the role of Levantine waters as main actual and potential carrier of species in the area, though a relevant contribution comes also from North Adriatic dense waters through deep spilling and cascading in the Southern Adriatic pit. These findings increase the knowledge on holoplanktonic polychaetes ecology within the South Adriatic Sea, and represent significant data in the monitoring of changes in biodiversity.


Subject(s)
Polychaeta/classification , Animals , Biodiversity , Ecology , Oceanography , Plankton/physiology , Seasons , Seawater , Temperature
2.
BMC Evol Biol ; 10: 276, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20836842

ABSTRACT

BACKGROUND: Despite the impressive growth of sequence databases, the limited availability of nuclear markers that are sufficiently polymorphic for population genetics and phylogeography and applicable across various phyla restricts many potential studies, particularly in non-model organisms. Numerous introns have invariant positions among kingdoms, providing a potential source for such markers. Unfortunately, most of the few known EPIC (Exon Primed Intron Crossing) loci are restricted to vertebrates or belong to multigenic families. RESULTS: In order to develop markers with broad applicability, we designed a bioinformatic approach aimed at avoiding multigenic families while identifying intron positions conserved across metazoan phyla. We developed a program facilitating the identification of EPIC loci which allowed slight variation in intron position. From the Homolens databases we selected 29 gene families which contained 52 promising introns for which we designed 93 primer pairs. PCR tests were performed on several ascidians, echinoderms, bivalves and cnidarians. On average, 24 different introns per genus were amplified in bilaterians. Remarkably, five of the introns successfully amplified in all of the metazoan genera tested (a dozen genera, including cnidarians). The influence of several factors on amplification success was investigated. Success rate was not related to the phylogenetic relatedness of a taxon to the groups that most influenced primer design, showing that these EPIC markers are extremely conserved in animals. CONCLUSIONS: Our new method now makes it possible to (i) rapidly isolate a set of EPIC markers for any phylum, even outside the animal kingdom, and thus, (ii) compare genetic diversity at potentially homologous polymorphic loci between divergent taxa.


Subject(s)
Computational Biology/methods , Genetic Markers/genetics , Animals , Introns/genetics , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...