Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Care Res (Hoboken) ; 76(3): 328-339, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37691306

ABSTRACT

OBJECTIVE: Systemic juvenile idiopathic arthritis-associated lung disease (SJIA-LD) is a life-threatening disease complication. Key questions remain regarding clinical course and optimal treatment approaches. The objectives of the study were to detail management strategies after SJIA-LD detection, characterize overall disease courses, and measure long-term outcomes. METHODS: This was a prospective cohort study. Clinical data were abstracted from the electronic medical record, including current clinical status and changes since diagnosis. Serum biomarkers were determined and correlated with presence of LD. RESULTS: We enrolled 41 patients with SJIA-LD, 85% with at least one episode of macrophage activation syndrome and 41% with adverse reactions to a biologic. Although 93% of patients were alive at last follow-up (median 2.9 years), 37% progressed to requiring chronic oxygen or other ventilator support, and 65% of patients had abnormal overnight oximetry studies, which changed over time. Eighty-four percent of patients carried the HLA-DRB1*15 haplotype, significantly more than patients without LD. Patients with SJIA-LD also showed markedly elevated serum interleukin-18 (IL-18), variable C-X-C motif chemokine ligand 9 (CXCL9), and significantly elevated matrix metalloproteinase 7. Treatment strategies showed variable use of anti-IL-1/6 biologics and addition of other immunomodulatory treatments and lung-directed therapies. We found a broad range of current clinical status independent of time from diagnosis or continued biologic treatment. Multidomain measures of change showed imaging features were the least likely to improve with time. CONCLUSION: Patients with SJIA-LD had highly varied courses, with lower mortality than previously reported but frequent hypoxia and requirement for respiratory support. Treatment strategies were highly varied, highlighting an urgent need for focused clinical trials.


Subject(s)
Arthritis, Juvenile , Lung Diseases , Macrophage Activation Syndrome , Child , Humans , Arthritis, Juvenile/complications , Arthritis, Juvenile/diagnosis , Arthritis, Juvenile/drug therapy , Prospective Studies , Lung , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/therapy , Disease Progression
2.
J Appl Physiol (1985) ; 132(2): 527-540, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34989652

ABSTRACT

Anatomical and imaging evidence suggests neural control of oblique and horizontal compartments of the genioglossus differs. However, neurophysiological evidence for differential control remains elusive. This study aimed to determine whether there are differences in neural drive to the oblique and horizontal regions of the genioglossus during swallowing and tongue protrusion. Adult participants (n = 63; 48 M) were recruited from a sleep clinic; 41 had obstructive sleep apnea (OSA: 34 M, 8 F). Electromyographic (EMG) was recorded at rest (awake, supine) using four intramuscular fine-wire electrodes inserted percutaneously into the anterior oblique, posterior oblique, anterior horizontal, and posterior horizontal genioglossus. Epiglottic pressure and nasal airflow were also measured. During swallowing, two distinct EMG patterns were observed - a monophasic response (single EMG peak) and a biphasic response (2 bursts of EMG). Peak EMG and timing of the peak relative to epiglottic pressure were significantly different between patterns (linear mixed models, P < 0.001). Monophasic activation was more likely in the horizontal than oblique region during swallowing (OR = 6.83, CI = 3.46-13.53, P < 0.001). In contrast, during tongue protrusion, activation patterns and EMG magnitude were not different between regions. There were no systematic differences in EMG patterns during swallowing or tongue protrusion between OSA and non-OSA groups. These findings provide evidence for functional differences in the motoneuronal output to the oblique and horizontal compartments, enabling differential task-specific drive. Given this, it is important to identify the compartment from which EMG is acquired. We propose that the EMG patterns during swallowing may be used to identify the compartment where a recording electrode is located.NEW & NOTEWORTHY During swallowing, we observed two distinct, stereotyped muscle activation patterns that define the horizontal (monophasic, maximal EMG) and oblique (biphasic, submaximal EMG) neuromuscular compartments of genioglossus. In contrast, volitional tongue protrusions produced uniform activation across compartments. This provides evidence for task-dependent, functionally discrete neuromuscular control of the oblique and horizontal compartments of genioglossus. The magnitude and temporal patterning of genioglossus EMG during swallowing may help guide electrode placement in tongue EMG studies.


Subject(s)
Sleep Apnea, Obstructive , Tongue , Adult , Electromyography , Facial Muscles , Humans , Tongue/physiology , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...