Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 37: 101693, 2020 10.
Article in English | MEDLINE | ID: mdl-32912836

ABSTRACT

Glutathione is a low molecular weight thiol that is present at high levels in the cell. The high levels of glutathione in the cell make it one of the most abundant antioxidants contributing to cellular redox homeostasis. As a general rule, throughout cardiovascular disease and progression there is an imbalance in redox homeostasis characterized by reactive oxygen species overproduction and glutathione underproduction. As research into these imbalances continues, glutathione concentrations are increasingly being observed to drive various physiological and pathological signaling responses. Interestingly in addition to acting directly as an antioxidant, glutathione is capable of post translational modifications (S-glutathionylation) of proteins through both chemical interactions and enzyme mediated events. This review will discuss both the chemical and enzyme-based S-glutathionylation of proteins involved in cardiovascular pathologies and angiogenesis.


Subject(s)
Antioxidants , Glutathione , Glutathione/metabolism , Oxidation-Reduction , Protein Processing, Post-Translational , Reactive Oxygen Species/metabolism
2.
Pathophysiology ; 26(1): 1-10, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30528175

ABSTRACT

Hydrogen sulfide (H2S) has been identified as a vasodilatory, neuromodulatory, and anti-inflammatory gasotransmitter with antioxidant properties. Studies focused in cardiac tissue suggest H2S functions as a protective agent; however in the central nervous system (CNS) the effects of H2S during states of stress or injury, such as stroke, remain controversial. Currently, the application of H2S donors and modulators in stroke depends on the type of H2S donor and the timing of the therapy.

3.
Oncogene ; 27(1): 32-43, 2008 Jan 03.
Article in English | MEDLINE | ID: mdl-17653096

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) viral protein R (vpr) gene is an evolutionarily conserved gene among the primate lentiviruses. Several functions are attributed to Vpr including the ability to cause cell death, cell cycle arrest, apoptosis and DNA damage. The Vpr domain responsible for DNA damage as well as the mechanism(s) through which Vpr induces this damage is unknown. Using site-directed mutagenesis, we identified the helical domain II within Vpr (aa 37-50) as the region responsible for causing DNA damage. Interestingly, Vpr Delta(37-50) failed to cause cell cycle arrest or apoptosis, to induce Ku70 or Ku80 and to suppress tumor growth, but maintained its capability to activate the HIV-1 LTR, to localize to the nucleus and to promote nonhomologous end-joining. In addition, our cytogenetic data indicated that helical domain II induced chromosomal aberrations, which mimicked those induced by cisplatin, an anticancer agent. This novel molecular mimicry function of Vpr might lead to its potential therapeutic use as a tumor suppressor.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , Cisplatin/toxicity , DNA Damage/drug effects , HIV-1/genetics , Molecular Mimicry/genetics , Tumor Suppressor Proteins/genetics , vpr Gene Products, Human Immunodeficiency Virus/genetics , Amino Acid Sequence , Animals , Anti-HIV Agents/toxicity , Cell Line, Tumor , DNA Damage/genetics , Female , HIV-1/drug effects , HIV-1/physiology , Humans , Mice , Mice, Inbred C3H , Molecular Mimicry/drug effects , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/genetics , Tumor Suppressor Proteins/physiology , vpr Gene Products, Human Immunodeficiency Virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...