Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Adv Radiat Oncol ; 7(2): 100886, 2022.
Article in English | MEDLINE | ID: mdl-35387423

ABSTRACT

Purpose: The aim was to develop a novel artificial intelligence (AI)-guided clinical decision support system, to predict radiation doses to subsites of the mandible using diagnostic computed tomography scans acquired before any planning of head and neck radiation therapy (RT). Methods and Materials: A dose classifier was trained using RT plans from 86 patients with oropharyngeal cancer; the test set consisted of an additional 20 plans. The classifier was trained to predict whether mandible subsites would receive a mean dose >50 Gy. The AI predictions were prospectively evaluated and compared with those of a specialist head and neck radiation oncologist for 9 patients. Positive predictive value (PPV), negative predictive value (NPV), Pearson correlation coefficient, and Lin concordance correlation coefficient were calculated to compare the AI predictions to those of the physician. Results: In the test data set, the AI predictions had a PPV of 0.95 and NPV of 0.88. For 9 patients evaluated prospectively, there was a strong correlation between the predictions of the AI algorithm and physician (P = .72, P < .001). Comparing the AI algorithm versus the physician, the PPVs were 0.82 versus 0.25, and the NPVs were 0.94 versus 1.0, respectively. Concordance between physician estimates and final planned doses was 0.62; this was 0.71 between AI-based estimates and final planned doses. Conclusion: AI-guided decision support increased precision and accuracy of pre-RT dental dose estimates.

2.
Radiother Oncol ; 125(3): 392-397, 2017 12.
Article in English | MEDLINE | ID: mdl-29162279

ABSTRACT

BACKGROUND AND PURPOSE: Clinical decision support systems are a growing class of tools with the potential to impact healthcare. This study investigates the construction of a decision support system through which clinicians can efficiently identify which previously approved historical treatment plans are achievable for a new patient to aid in selection of therapy. MATERIAL AND METHODS: Treatment data were collected for early-stage lung and postoperative oropharyngeal cancers treated using photon (lung and head and neck) and proton (head and neck) radiotherapy. Machine-learning classifiers were constructed using patient-specific feature-sets and a library of historical plans. Model accuracy was analyzed using learning curves, and historical treatment plan matching was investigated. RESULTS: Learning curves demonstrate that for these datasets, approximately 45, 60, and 30 patients are needed for a sufficiently accurate classification model for radiotherapy for early-stage lung, postoperative oropharyngeal photon, and postoperative oropharyngeal proton, respectively. The resulting classification model provides a database of previously approved treatment plans that are achievable for a new patient. An exemplary case, highlighting tradeoffs between the heart and chest wall dose while holding target dose constant in two historical plans is provided. CONCLUSIONS: We report on the first artificial-intelligence based clinical decision support system that connects patients to past discrete treatment plans in radiation oncology and demonstrate for the first time how this tool can enable clinicians to use past decisions to help inform current assessments. Clinicians can be informed of dose tradeoffs between critical structures early in the treatment process, enabling more time spent on finding the optimal course of treatment for individual patients.


Subject(s)
Decision Making , Decision Support Systems, Clinical , Machine Learning , Oropharyngeal Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Humans
3.
J Grad Med Educ ; 8(4): 563-568, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27777668

ABSTRACT

BACKGROUND: Integrating teaching and hands-on experience in quality improvement (QI) may increase the learning and the impact of resident QI work. OBJECTIVE: We sought to determine the clinical and educational impact of an integrated QI curriculum. METHODS: This clustered, randomized trial with early and late intervention groups used mixed methods evaluation. For almost 2 years, internal medicine residents from Dartmouth-Hitchcock Medical Center on the inpatient teams at the White River Junction VA participated in the QI curriculum. QI project effectiveness was assessed using statistical process control. Learning outcomes were assessed with the Quality Improvement Knowledge Application Tool-Revised (QIKAT-R) and through self-efficacy, interprofessional care attitudes, and satisfaction of learners. Free text responses by residents and a focus group of nurses who worked with the residents provided information about the acceptability of the intervention. RESULTS: The QI projects improved many clinical processes and outcomes, but not all led to improvements. Educational outcome response rates were 65% (68 of 105) at baseline, 50% (18 of 36) for the early intervention group at midpoint, 67% (24 of 36) for the control group at midpoint, and 53% (42 of 80) for the late intervention group. Composite QIKAT-R scores (range, 0-27) increased from 13.3 at baseline to 15.3 at end point (P < .01), as did the self-efficacy composite score (P < .05). Satisfaction with the curriculum was rated highly by all participants. CONCLUSIONS: Learning and participating in hands-on QI can be integrated into the usual inpatient work of resident physicians.


Subject(s)
Clinical Competence , Curriculum , Internal Medicine/education , Internship and Residency/methods , Quality Improvement/organization & administration , Academic Medical Centers , Humans , Program Evaluation , United States , United States Department of Veterans Affairs , Vermont
4.
IEEE Trans Med Imaging ; 33(6): 1373-80, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24771571

ABSTRACT

Poroelastic magnetic resonance elastography is an imaging technique that could recover mechanical and hydrodynamical material properties of in vivo tissue. To date, mechanical properties have been estimated while hydrodynamical parameters have been assumed homogeneous with literature-based values. Estimating spatially-varying hydraulic conductivity would likely improve model accuracy and provide new image information related to a tissue's interstitial fluid compartment. A poroelastic model was reformulated to recover hydraulic conductivity with more appropriate fluid-flow boundary conditions. Simulated and physical experiments were conducted to evaluate the accuracy and stability of the inversion algorithm. Simulations were accurate (property errors were < 2%) even in the presence of Gaussian measurement noise up to 3%. The reformulated model significantly decreased variation in the shear modulus estimate (p << 0.001) and eliminated the homogeneity assumption and the need to assign hydraulic conductivity values from literature. Material property contrast was recovered experimentally in three different tofu phantoms and the accuracy was improved through soft-prior regularization. A frequency-dependence in hydraulic conductivity contrast was observed suggesting that fluid-solid interactions may be more prominent at low frequency. In vivo recovery of both structural and hydrodynamical characteristics of tissue could improve detection and diagnosis of neurological disorders such as hydrocephalus and brain tumors.


Subject(s)
Elasticity Imaging Techniques/methods , Image Processing, Computer-Assisted/methods , Algorithms , Biomechanical Phenomena/physiology , Elastic Modulus , Models, Biological , Phantoms, Imaging
5.
Med Phys ; 40(6): 063503, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23718614

ABSTRACT

PURPOSE: Breast cancer is a major public health issue for women, and early detection significantly increases survival rate. Currently, there is increased research interest in elastographic soft-tissue imaging techniques based on the correlation between pathology and mechanical stiffness. Anthropomorphic breast phantoms are critical for ex vivo validation of emerging elastographic technologies. This research develops heterogeneous breast phantoms for use in testing elastographic imaging modalities. METHODS: Mechanical property estimation of eight different elastomers is performed to determine storage moduli (E') and damping ratios (ζ) using a dynamic mechanical analyzer. Dynamic compression testing was carried out isothermally at room temperature over a range of 4-50 Hz. Silicone compositions with physiologically realistic storage modulus were chosen for mimicking skin adipose, cancerous tumors, and pectoral muscles and 13 anthropomorphic breast phantoms were constructed for ex vivo trials of digital image elastotomography (DIET) breast cancer screening system. A simpler fabrication was used to assess the possibility of multiple tumor detection using magnetic resonance elastography (MRE). RESULTS: Silicone materials with ranges of storage moduli (E') from 2 to 570 kPa and damping ratios (ζ) from 0.03 to 0.56 were identified. The resulting phantoms were tested in two different elastographic breast cancer diagnostic modalities. A significant contrast was successfully identified between healthy tissues and cancerous tumors both in MRE and DIET. CONCLUSIONS: The phantoms presented promise aid to researchers in elastographic imaging modalities for breast cancer detection and provide a foundation for silicone based phantom materials for mimicking soft tissues of other human organs.


Subject(s)
Biomimetic Materials/chemistry , Biomimetics/instrumentation , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/physiopathology , Elasticity Imaging Techniques/instrumentation , Ultrasonography, Mammary/instrumentation , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Female , Hardness , Humans , Reproducibility of Results , Sensitivity and Specificity
6.
Phys Med Biol ; 57(22): 7275-87, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23079508

ABSTRACT

Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed 'intrinsic activation', that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of six asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when the MRE procedures were repeated on the same day. Cardiac pulsation, termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.


Subject(s)
Brain/blood supply , Elasticity Imaging Techniques/methods , Mechanical Phenomena , Biomechanical Phenomena , Blood Vessels/physiology , Brain/physiology , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Movement
7.
Med Phys ; 37(7): 3518-26, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20831058

ABSTRACT

PURPOSE: Recent interest in the poroelastic behavior of tissues has led to the development of magnetic resonance poroelastography (MRPE) as an alternative to single-phase MR elastographic image reconstruction. In addition to the elastic parameters (i.e., Lamé's constants) commonly associated with magnetic resonance elastography (MRE), MRPE enables estimation of the time-harmonic pore-pressure field induced by external mechanical vibration. METHODS: This study presents numerical simulations that demonstrate the sensitivity of the computed displacement and pore-pressure fields to a priori estimates of the experimentally derived model parameters. In addition, experimental data collected in three poroelastic phantoms are used to assess the quantitative accuracy of MR poroelastographic imaging through comparisons with both quasistatic and dynamic mechanical tests. RESULTS: The results indicate hydraulic conductivity to be the dominant parameter influencing the deformation behavior of poroelastic media under conditions applied during MRE. MRPE estimation of the matrix shear modulus was bracketed by the values determined from independent quasistatic and dynamic mechanical measurements as expected, whereas the contrast ratios for embedded inclusions were quantitatively similar (10%-15% difference between the reconstructed images and the mechanical tests). CONCLUSIONS: The findings suggest that the addition of hydraulic conductivity and a viscoelastic solid component as parameters in the reconstruction may be warranted.


Subject(s)
Elasticity Imaging Techniques/methods , Image Processing, Computer-Assisted/methods , Models, Biological , Phantoms, Imaging , Porosity , Reproducibility of Results , Shear Strength , Soy Foods
SELECTION OF CITATIONS
SEARCH DETAIL
...