Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7(1): 6755, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28754901

ABSTRACT

Disruptions in circadian timing impair spatial memory in humans and rodents. Circadian-arrhythmic Siberian hamsters (Phodopus sungorus) exhibit substantial deficits in spatial working memory as assessed by a spontaneous alternation (SA) task. The present study found that daily scheduled feeding rescued spatial memory deficits in these arrhythmic animals. Improvements in memory persisted for at least 3 weeks after the arrhythmic hamsters were switched back to ad libitum feeding. During ad libitum feeding, locomotor activity resumed its arrhythmic state, but performance on the SA task varied across the day with a peak in daily performance that corresponded to the previous daily window of food anticipation. At the end of scheduled feeding, c-Fos brain mapping revealed differential gene expression in entrained versus arrhythmic hamsters in the suprachiasmatic nucleus (SCN) that paralleled changes in the medial septum and hippocampus, but not in other neural structures. These data show that scheduled feeding can improve cognitive performance when SCN timing has been compromised, possibly by coordinating activity in the SCN and septohippocampal pathway.


Subject(s)
Feeding Behavior , Hippocampus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Septum of Brain/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Behavior, Animal , Circadian Rhythm/radiation effects , Cricetinae , Hippocampus/radiation effects , Light , Septum of Brain/radiation effects , Spatial Memory/radiation effects , Suprachiasmatic Nucleus/radiation effects
2.
J Biol Rhythms ; 30(5): 408-16, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26224657

ABSTRACT

Compression of the active phase (α) during reentrainment to phase-shifted light-dark (LD) cycles is a common feature of circadian systems, but its functional consequences have not been investigated. This study tested whether α compression in Siberian hamsters (Phodopus sungorus) impaired their spatial working memory as assessed by spontaneous alternation (SA) behavior in a T-maze. Animals were exposed to a 1- or 3-h phase delay of the LD cycle (16 h light/8 h dark). SA behavior was tested at 4 multiday intervals after the phase shift, and α was quantified for those days. All animals failed at the SA task while α was decompressing but recovered spatial memory ability once α returned to baseline levels. A second experiment exposed hamsters to a 2-h light pulse either early or late at night to compress α without phase-shifting the LD cycle. SA behavior was impaired until α decompressed to baseline levels. In a third experiment, α was compressed by changing photoperiod (LD 16:8, 18:6, 20:4) to see if absolute differences in α were related to spatial memory ability. Animals performed the SA task successfully in all 3 photoperiods. These data show that the dynamic process of α compression and decompression impairs spatial working memory and suggests that α modulation is a potential biomarker for assessing the impact of transmeridian flight or shift work on memory.


Subject(s)
Circadian Rhythm/physiology , Maze Learning/physiology , Memory, Short-Term/physiology , Photoperiod , Analysis of Variance , Animals , Cricetinae , Female , Light , Male , Maze Learning/radiation effects , Motor Activity/physiology , Motor Activity/radiation effects , Phodopus , Time Factors
3.
PLoS One ; 9(12): e112451, 2014.
Article in English | MEDLINE | ID: mdl-25502949

ABSTRACT

Circadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals. Whether this involves 1 or 2 circadian clocks is unknown. To gain insight into how the circadian system adjusts to 2 daily mealtimes, male rats in a 12∶12 light-dark cycle were fed a 2 h meal either 4 h after lights-on or 4 h after lights-off, or a 1 h meal at both times. After 30 days, brain, blood, adrenal and stomach tissue were collected at 6 time points. Multiple clock genes from adrenals and stomachs were assayed by RT-PCR. Blood was assayed for corticosterone and ghrelin. Bmal1 expression was quantified in 14 brain regions by in situ hybridization. Clock gene rhythms in adrenal and stomach from day-fed rats oscillated in antiphase with the rhythms in night-fed rats, and at an intermediate phase in rats fed twice daily. Corticosterone and ghrelin in 1-meal rats peaked at or prior to the expected mealtime. In 2-meal rats, corticosterone peaked only prior the nighttime meal, while ghrelin peaked prior to the daytime meal and then remained elevated. The olfactory bulb, nucleus accumbens, dorsal striatum, cerebellum and arcuate nucleus exhibited significant daily rhythms of Bmal1 in the night-fed groups that were approximately in antiphase in the day-fed groups, and at intermediate levels (arrhythmic) in rats anticipating 2 daily meals. The dissociations between anticipatory activity and the peripheral clocks and hormones in rats anticipating 2 daily meals argue against a role for these signals in the timing of behavioral rhythms. The absence of rhythmicity at the tissue level in brain regions from rats anticipating 2 daily meals support behavioral evidence that circadian clock cells in these tissues may reorganize into two populations coupled to different meals.


Subject(s)
Anticipation, Psychological , Circadian Clocks/genetics , Food , Hormones/metabolism , ARNTL Transcription Factors/metabolism , Adrenal Glands/metabolism , Animals , Brain/metabolism , Brain/physiology , Corticosterone/blood , Gastric Mucosa/metabolism , Ghrelin/blood , Male , Mice , Motor Activity , Period Circadian Proteins/metabolism , Rats , Rats, Sprague-Dawley
4.
Behav Neurosci ; 128(6): 689-702, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25285457

ABSTRACT

Rats can anticipate a daily feeding time. This has been interpreted as a rhythm controlled by food-entrainable circadian oscillators, because the rhythm persists during several cycles of total food deprivation and fails to track mealtimes if the feeding schedule deviates substantially from 24. These and other properties distinguish anticipation of daily meals from anticipation of food rewards provided at intervals in the seconds-to-minutes range, suggesting distinct mechanisms. It has been reported that rats can anticipate meals at long, but noncircadian, intervals if they are required to work for food, and that anticipation of daily meals, expressed in operant behavior, shows the scalar property, a hallmark of timing intervals in the seconds-to-minutes range. These observations raise the possibility of a universal timing system, rather than unique mechanisms for circadian and noncircadian intervals. To test whether circadian constraints on daily meal timing depend on the measure of behavior, we re-examined formal properties of food anticipation using lever pressing and motion sensors. We observed robust anticipation in both measures to meals at 24-hr intervals but no anticipation of meals at 18-hr intervals in light-dark or constant light and no evidence that the duration of anticipation scales with the interval between lighting transitions and mealtime. We are therefore unable to confirm reports that operant measures can reveal timing at long, but noncircadian, intervals. If timing processes exist that do permit anticipation of events at long, but noncircadian, intervals, the conditions under which these can be revealed are evidently highly constrained.


Subject(s)
Circadian Rhythm/physiology , Feeding Behavior/physiology , Motivation/physiology , Time Perception/physiology , Analysis of Variance , Animals , Conditioning, Operant/physiology , Food Deprivation/physiology , Light , Male , Motor Activity , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Telemetry , Time Factors
5.
Elife ; 3: e03781, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25217530

ABSTRACT

Daily rhythms of food anticipatory activity (FAA) are regulated independently of the suprachiasmatic nucleus, which mediates entrainment of rhythms to light, but the neural circuits that establish FAA remain elusive. In this study, we show that mice lacking the dopamine D1 receptor (D1R KO mice) manifest greatly reduced FAA, whereas mice lacking the dopamine D2 receptor have normal FAA. To determine where dopamine exerts its effect, we limited expression of dopamine signaling to the dorsal striatum of dopamine-deficient mice; these mice developed FAA. Within the dorsal striatum, the daily rhythm of clock gene period2 expression was markedly suppressed in D1R KO mice. Pharmacological activation of D1R at the same time daily was sufficient to establish anticipatory activity in wild-type mice. These results demonstrate that dopamine signaling to D1R-expressing neurons in the dorsal striatum plays an important role in manifestation of FAA, possibly by synchronizing circadian oscillators that modulate motivational processes and behavioral output.


Subject(s)
Anticipation, Psychological , Circadian Rhythm , Feeding Behavior , Neostriatum/metabolism , Neurons/metabolism , Receptors, Dopamine D1/metabolism , Animals , Behavior, Animal , Body Temperature , Caloric Restriction , Cues , Diet , Dopamine/metabolism , Fasting , Handling, Psychological , Mice, Knockout , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Physical Conditioning, Animal , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
PLoS One ; 8(12): e81588, 2013.
Article in English | MEDLINE | ID: mdl-24324709

ABSTRACT

Restricted daily feeding schedules entrain circadian oscillators that generate food anticipatory activity (FAA) rhythms in nocturnal rodents. The location of food-entrainable oscillators (FEOs) necessary for FAA remains uncertain. The most common procedure for inducing circadian FAA is to limit food access to a few hours in the middle of the light period, when activity levels are normally low. Although light at night suppresses activity (negative masking) in nocturnal rodents, it does not prevent the expression of daytime FAA. Nonetheless, light could reduce the duration or magnitude of FAA. If so, then neural or genetic ablations designed to identify components of the food-entrainable circadian system could alter the expression of FAA by affecting behavioral responses to light. To assess the plausibility of light as a potential mediating variable in studies of FAA mechanisms, we quantified FAA in rats and mice alternately maintained in a standard full photoperiod (12h of light/day) and in a skeleton photoperiod (two 60 min light pulses simulating dawn and dusk). In both species, FAA was significantly and reversibly enhanced in the skeleton photoperiod compared to the full photoperiod. In a third experiment, FAA was found to be significantly attenuated in rats by pinealectomy, a procedure that has been reported to enhance some effects of light on behavioral circadian rhythms. These results indicate that procedures affecting behavioral responses to light can significantly alter the magnitude of food anticipatory rhythms in rodents.


Subject(s)
Circadian Rhythm/physiology , Feeding Behavior/physiology , Food , Photoperiod , Pineal Gland/physiology , Animals , Darkness , Male , Melatonin/metabolism , Mice , Mice, Inbred C57BL , Pineal Gland/surgery , Rats , Rats, Sprague-Dawley , Telemetry
7.
PLoS One ; 8(11): e82381, 2013.
Article in English | MEDLINE | ID: mdl-24312417

ABSTRACT

Circadian activity rhythms are jointly controlled by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) and by food-entrainable circadian oscillators (FEOs) located elsewhere. The SCN mediates synchrony to daily light-dark cycles, whereas FEOs generate activity rhythms synchronized with regular daily mealtimes. The location of FEOs generating food anticipation rhythms, and the pathways that entrain these FEOs, remain to be clarified. To gain insight into entrainment pathways, we developed a protocol for measuring phase shifts of anticipatory activity rhythms in response to pharmacological probes. We used this protocol to examine a role for dopamine signaling in the timing of circadian food anticipation. To generate a stable food anticipation rhythm, rats were fed 3h/day beginning 6-h after lights-on or in constant light for at least 3 weeks. Rats then received the D2 agonist quinpirole (1 mg/kg IP) alone or after pretreatment with the dopamine synthesis inhibitor α-methylparatyrosine (AMPT). By comparison with vehicle injections, quinpirole administered 1-h before lights-off (19h before mealtime) induced a phase delay of activity onset prior to the next meal. Delay shifts were larger in rats pretreated with AMPT, and smaller following quinpirole administered 4-h after lights-on. A significant shift was not observed in response to the D1 agonist SKF81297. These results provide evidence that signaling at D2 receptors is involved in phase control of FEOs responsible for circadian food anticipatory rhythms in rats.


Subject(s)
Circadian Rhythm , Dopamine/metabolism , Feeding Behavior , Animals , Benzazepines/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Male , Quinpirole/pharmacology , Rats , Rats, Sprague-Dawley
8.
Front Neurosci ; 7: 185, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24133410

ABSTRACT

Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is directly entrained by daily light-dark (LD) cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs) that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this system.

9.
PLoS One ; 7(2): e31772, 2012.
Article in English | MEDLINE | ID: mdl-22355393

ABSTRACT

Anticipation of a daily meal in rats has been conceptualized as a rest-activity rhythm driven by a food-entrained circadian oscillator separate from the pacemaker generating light-dark (LD) entrained rhythms. Rats can also anticipate two daily mealtimes, but whether this involves independently entrained oscillators, one 'continuously consulted' clock, cue-dependent non-circadian interval timing or a combination of processes, is unclear. Rats received two daily meals, beginning 3-h (meal 1) and 13-h (meal 2) after lights-on (LD 14:10). Anticipatory wheel running began 68±8 min prior to meal 1 and 101±9 min prior to meal 2 but neither the duration nor the variability of anticipation bout lengths exhibited the scalar property, a hallmark of interval timing. Meal omission tests in LD and constant dark (DD) did not alter the timing of either bout of anticipation, and anticipation of meal 2 was not altered by a 3-h advance of meal 1. Food anticipatory running in this 2-meal protocol thus does not exhibit properties of interval timing despite the availability of external time cues in LD. Across all days, the two bouts of anticipation were uncorrelated, a result more consistent with two independently entrained oscillators than a single consulted clock. Similar results were obtained for meals scheduled 3-h and 10-h after lights-on, and for a food-bin measure of anticipation. Most rats that showed weak or no anticipation to one or both meals exhibited elevated activity at mealtime during 1 or 2 day food deprivation tests in DD, suggesting covert operation of circadian timing in the absence of anticipatory behavior. A control experiment confirmed that daytime feeding did not shift LD-entrained rhythms, ruling out displaced nocturnal activity as an explanation for daytime activity. The results favor a multiple oscillator basis for 2-meal anticipatory rhythms and provide no evidence for involvement of cue-dependent interval timing.


Subject(s)
Anticipation, Psychological , Circadian Rhythm/physiology , Eating/physiology , Feeding Behavior/physiology , Food Deprivation , Motor Activity/physiology , Animals , Male , Rats , Rats, Sprague-Dawley , Time Factors
10.
PLoS One ; 6(9): e24187, 2011.
Article in English | MEDLINE | ID: mdl-21912674

ABSTRACT

The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T(b)) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T(b) rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T(b) rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep.


Subject(s)
Anticipation, Psychological/drug effects , Circadian Rhythm/drug effects , Dorsomedial Hypothalamic Nucleus/drug effects , Eating/psychology , Ibotenic Acid/toxicity , Neurotoxins/toxicity , Ablation Techniques , Animals , Anticipation, Psychological/physiology , Body Temperature/drug effects , Body Temperature/physiology , Circadian Rhythm/physiology , Dorsomedial Hypothalamic Nucleus/physiopathology , Dorsomedial Hypothalamic Nucleus/surgery , Eating/drug effects , Food Deprivation/physiology , Male , Rats , Rats, Sprague-Dawley , Suprachiasmatic Nucleus/drug effects , Suprachiasmatic Nucleus/physiology , Telemetry , Time Factors
11.
PLoS One ; 5(9)2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20941366

ABSTRACT

The ability to sense time and anticipate events is a critical skill in nature. Most efforts to understand the neural and molecular mechanisms of anticipatory behavior in rodents rely on daily restricted food access, which induces a robust increase of locomotor activity in anticipation of daily meal time. Interestingly, rats also show increased activity in anticipation of a daily palatable meal even when they have an ample food supply, suggesting a role for brain reward systems in anticipatory behavior, and providing an alternate model by which to study the neurobiology of anticipation in species, such as mice, that are less well adapted to "stuff and starve" feeding schedules. To extend this model to mice, and exploit molecular genetic resources available for that species, we tested the ability of wild-type mice to anticipate a daily palatable meal. We observed that mice with free access to regular chow and limited access to highly palatable snacks of chocolate or "Fruit Crunchies" avidly consumed the snack but did not show anticipatory locomotor activity as measured by running wheels or video-based behavioral analysis. However, male mice receiving a snack of high fat chow did show increased food bin entry prior to access time and a modest increase in activity in the two hours preceding the scheduled meal. Interestingly, female mice did not show anticipation of a daily high fat meal but did show increased activity at scheduled mealtime when that meal was withdrawn. These results indicate that anticipation of a scheduled food reward in mice is behavior, diet, and gender specific.


Subject(s)
Feeding Behavior , Mice/physiology , Animals , Female , Male , Mice/genetics , Mice, Inbred C57BL , Motor Activity
12.
Eur J Neurosci ; 27(4): 828-35, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18279358

ABSTRACT

In Syrian hamsters, some procedures for stimulating behavioural arousal (e.g. running in a novel wheel and sleep deprivation by gentle handling with minimal activity) markedly phase-advance circadian rhythms when applied during the middle of the daily rest period, while other arousal procedures do not (e.g. physical restraint, caffeine and modafinil). The neural basis for this differential effect of arousal procedures on clock resetting is unknown. We used c-fos expression as a marker for neuronal activation to determine whether these arousal procedures differentially activate two nonphotic inputs to the circadian system, the thalamic intergeniculate leaflet (IGL; a proposed nonphotic gateway to the circadian clock) and the hypothalamic hypocretin system (which depolarizes arousal-related cell groups throughout the brain and innervates both the IGL and the peri-suprachiasmatic nucleus region). c-FOS in hypocretin-1-immunoreactive neurons, in hypothalamic nonhypocretin neurons and in the IGL was significantly increased by novel wheel running, gentle handling and physical restraint, but only weakly by systemic injections of modafinil (300 mg/kg) or caffeine (75 mg/kg), at doses that are strongly alerting. Spatial analysis revealed few regional differences in the percentage of cells double-labelled for hypocretin-1 and c-FOS following each treatment. These results suggest that activation of hypocretin neurons (as in the restraint condition) is not sufficient to induce phase shifts, and that gating of arousal effects on circadian clock phase may be downstream from the hypocretin system and from IGL neurons activated by these procedures.


Subject(s)
Arousal/physiology , Circadian Rhythm/physiology , Hypothalamus/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Thalamus/physiology , Animals , Benzhydryl Compounds/pharmacology , Central Nervous System Stimulants/pharmacology , Cricetinae , Hypothalamus/drug effects , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/drug effects , Mesocricetus , Modafinil , Neurons/drug effects , Neuropeptides/drug effects , Orexins , Physical Stimulation , Proto-Oncogene Proteins c-fos/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological , Thalamus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...