Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 14(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37754698

ABSTRACT

Globalization and climate change are key drivers for arboviral and parasitic infectious diseases to expand geographically, posing a growing threat to human health and biodiversity. New non-pesticidal approaches are urgently needed because of increasing insecticide resistance and the negative human and environmental health impacts of synthetic pyrethroids used for fogging. Here, we report the complete and rapid removal of two mosquito species (Aedes aegypti L. and Culex quinquefasciatus Say), both arboviral disease vectors, with odor-baited mosquito traps (at a density of 10 traps/hectare) from a 7.2-hectare island in the Philippines in just 5 months. This rapid elimination of mosquitoes from an island is remarkable and provides further proof that high-density mosquito trapping can play a significant role in mosquito- and vector-borne disease elimination in small islands around the world.

2.
Insects ; 13(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36135506

ABSTRACT

Globally, environmental impacts and insecticide resistance are forcing pest control organizations to adopt eco-friendly and insecticide-free alternatives to reduce the risk of mosquito-borne diseases, which affect millions of people, such as dengue, chikungunya or Zika virus. We used, for the first time, a combination of human odor-baited mosquito traps (at 6.0 traps/ha), oviposition traps (7.2 traps/ha) and larval source management (LSM) to practically eliminate populations of the Asian tiger mosquito Aedes albopictus (peak suppression 93.0% (95% CI 91.7-94.4)) and the Southern house mosquito Culex quinquefasciatus (peak suppression 98.3% (95% CI 97.0-99.5)) from a Maldivian island (size: 41.4 ha) within a year and thereafter observed a similar collapse of populations on a second island (size 49.0 ha; trap densities 4.1/ha and 8.2/ha for both trap types, respectively). On a third island (1.6 ha in size), we increased the human odor-baited trap density to 6.3/ha and then to 18.8/ha (combined with LSM but without oviposition traps), after which the Aedes mosquito population was eliminated within 2 months. Such suppression levels eliminate the risk of arboviral disease transmission for local communities and safeguard tourism, a vital economic resource for small island developing states. Terminating intense insecticide use (through fogging) benefits human and environmental health and restores insect biodiversity, coral reefs and marine life in these small and fragile island ecosystems. Moreover, trapping poses a convincing alternative to chemical control and reaches impact levels comparable to contemporary genetic control strategies. This can benefit numerous communities and provide livelihood options in small tropical islands around the world where mosquitoes pose both a nuisance and disease threat.

SELECTION OF CITATIONS
SEARCH DETAIL
...