Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Acta Physiol (Oxf) ; 240(4): e14118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385696

ABSTRACT

AIM: Force expression is characterized by an interplay of biological and molecular determinants that are expected to differentiate males and females in terms of maximal performance. These include muscle characteristics (muscle size, fiber type, contractility), neuromuscular regulation (central and peripheral factors of force expression), and individual genetic factors (miRNAs and gene/protein expression). This research aims to comprehensively assess these physiological variables and their role as determinants of maximal force difference between sexes. METHODS: Experimental evaluations include neuromuscular components of isometric contraction, intrinsic muscle characteristics (proteins and fiber type), and some biomarkers associated with muscle function (circulating miRNAs and gut microbiome) in 12 young and healthy males and 12 females. RESULTS: Male strength superiority appears to stem primarily from muscle size while muscle fiber-type distribution plays a crucial role in contractile properties. Moderate-to-strong pooled correlations between these muscle parameters were established with specific circulating miRNAs, as well as muscle and plasma proteins. CONCLUSION: Muscle size is crucial in explaining the differences in maximal voluntary isometric force generation between males and females with similar fiber type distribution. Potential physiological mechanisms are seen from associations between maximal force, skeletal muscle contractile properties, and biological markers.


Subject(s)
MicroRNAs , Sex Characteristics , Male , Humans , Female , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal , Isometric Contraction/physiology , Electromyography
2.
Antibiotics (Basel) ; 11(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36551353

ABSTRACT

BACKGROUND: The presence of carbapenemase-producing bacteria (CPB) in animal hosts and along the food chain may result in the development of reservoirs for human infections. Several CPB strains isolated from animals have been reported, suggesting that transmission and dissemination of the corresponding genes between humans and animals may occur. Animal and food samples have complex backgrounds that hinder the detection of CPB present in low concentrations by standard detection procedures. METHODS: We evaluated the possibility of detecting blaKPC, blaVIM, and blaOXA-48-like carbapenemases in 286 animal and food samples (faeces from farm and companion animals, raw meat, bivalve molluscs) by culture-based and standard molecular methods and by ddPCR. RESULTS: The proposed ddPCR managed to detect the target genes, also in samples resulting negative to standard methods. While the presence of blaKPC and blaVIM was detected in few samples (~3%), one third of the samples (n = 94/283) carried different variants of blaOXA-48-like genes. CONCLUSION: A specific and sensitive method such as ddPCR could be suitable to evaluate the current veterinarian and environmental situation and to assess the dynamic transmission and persistence of CPB between animals and humans and vice versa.

3.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012535

ABSTRACT

Achromobacter spp. can establish occasional or chronic lung infections in patients with cystic fibrosis (CF). Chronic colonization has been associated with worse prognosis highlighting the need to identify markers of bacterial persistence. To this purpose, we analyzed phenotypic features of 95 Achromobacter spp. isolates from 38 patients presenting chronic or occasional infection. Virulence was tested in Galleria mellonella larvae, cytotoxicity was tested in human bronchial epithelial cells, biofilm production in static conditions was measured by crystal violet staining and susceptibility to selected antibiotics was tested by the disk diffusion method. The presence of genetic loci associated to the analyzed phenotypic features was evaluated by a genome-wide association study. Isolates from occasional infection induced significantly higher mortality of G. mellonella larvae and showed a trend for lower cytotoxicity than chronic infection isolates. No significant difference was observed in biofilm production among the two groups. Additionally, antibiotic susceptibility testing showed that isolates from chronically-infected patients were significantly more resistant to sulfonamides and meropenem than occasional isolates. Candidate genetic biomarkers associated with antibiotic resistance or sensitivity were identified. Achromobacter spp. strains isolated from people with chronic and occasional lung infection exhibit different virulence and antibiotic susceptibility features, which could be linked to persistence in CF lungs. This underlines the possibility of identifying predictive biomarkers of persistence that could be useful for clinical purposes.


Subject(s)
Achromobacter , Cystic Fibrosis , Achromobacter/genetics , Anti-Bacterial Agents/pharmacology , Biomarkers , Cystic Fibrosis/complications , Drug Resistance, Bacterial , Genome-Wide Association Study , Humans , Microbial Sensitivity Tests
4.
Sci Rep ; 12(1): 9957, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705621

ABSTRACT

Strongyloidiasis is a neglected tropical disease caused by the soil-transmitted nematode by Strongyloides stercoralis, that affects approximately 600 million people worldwide. In immunosuppressed individuals disseminated strongyloidiasis can rapidly lead to fatal outcomes. There is no gold standard for diagnosing strongyloidiasis, and infections are frequently misdiagnosed. A better understanding of the molecular biology of this parasite can be useful for example for the discovery of potential new biomarkers. Interestingly, recent evidence showed the presence of small RNAs in Strongyloididae, but no data was provided for S. stercoralis. In this study, we present the first identification of miRNAs of both L1 and iL3 larval stages of S. stercoralis. For our purpose, the aims were: (i) to analyse the miRNome of L1 and iL3 S. stercoralis and to identify potential miRNAs of this nematode, (ii) to obtain the mRNAs profiles in these two larval stages and (iii) to predict potential miRNA target sites in mRNA sequences. Total RNA was isolated from L1 and iL3 collected from the stool of 5 infected individuals. For the miRNAs analysis, we used miRDeep2 software and a pipeline of bio-informatic tools to construct a catalog of a total of 385 sequences. Among these, 53% were common to S. ratti, 19% to S. papillosus, 1% to Caenorhabditis elegans and 44% were novel. Using a differential analysis between the larval stages, we observed 6 suggestive modulated miRNAs (STR-MIR-34A-3P, STR-MIR-8397-3P, STR-MIR-34B-3P and STR-MIR-34C-3P expressed more in iL3, and STR-MIR-7880H-5P and STR-MIR-7880M-5P expressed more in L1). Along with this analysis, we obtained also the mRNAs profiles in the same samples of larvae. Multiple testing found 81 statistically significant mRNAs of the total 1553 obtained (FDR < 0.05; 32 genes expressed more in L1 than iL3; 49 genes expressed more in L3 than iL1). Finally, we found 33 predicted mRNA targets of the modulated miRNAs, providing relevant data for a further validation to better understand the role of these small molecules in the larval stages and their valuein clinical diagnostics.


Subject(s)
MicroRNAs , Strongyloides stercoralis , Strongyloidiasis , Animals , Feces/parasitology , Humans , Larva/genetics , MicroRNAs/genetics , RNA, Messenger , Strongyloides stercoralis/genetics , Strongyloidiasis/diagnosis , Strongyloidiasis/genetics , Strongyloidiasis/parasitology
5.
Microb Genom ; 7(7)2021 07.
Article in English | MEDLINE | ID: mdl-34292148

ABSTRACT

Achromobacter species are increasingly being detected in cystic fibrosis (CF) patients, where they can establish chronic infections by adapting to the lower airway environment. To better understand the mechanisms contributing to a successful colonization by Achromobacter species, we sequenced the whole genome of 54 isolates from 26 patients with occasional and early/late chronic lung infection. We performed a phylogenetic analysis and compared virulence and resistance genes, genetic variants and mutations, and hypermutability mechanisms between chronic and occasional isolates. We identified five Achromobacter species as well as two non-affiliated genogroups (NGs). Among them were the frequently isolated Achromobacter xylosoxidans and four other species whose clinical importance is not yet clear: Achromobacter insuavis, Achromobacter dolens, Achromobacter insolitus and Achromobacter aegrifaciens. While A. insuavis and A. dolens were isolated only from chronically infected patients and A. aegrifaciens only from occasionally infected patients, the other species were found in both groups. Most of the occasional isolates lacked functional genes involved in invasiveness, chemotaxis, type 3 secretion system and anaerobic growth, whereas the great majority (>60%) of chronic isolates had these genomic features. Interestingly, almost all (n=22/23) late chronic isolates lacked functional genes involved in lipopolysaccharide production. Regarding antibiotic resistance, we observed a species-specific distribution of blaOXA genes, confirming what has been reported in the literature and additionally identifying blaOXA-2 in some A. insolitus isolates and observing no blaOXA genes in A. aegrifaciens or NGs. No significant difference in resistance genes was found between chronic and occasional isolates. The results of the mutator genes analysis showed that no occasional isolate had hypermutator characteristics, while 60% of early chronic (<1 year from first colonization) and 78% of late chronic (>1 year from first colonization) isolates were classified as hypermutators. Although all A. dolens, A. insuavis and NG isolates presented two different mutS genes, these seem to have a complementary rather than compensatory function. In conclusion, our results show that Achromobacter species can exhibit different adaptive mechanisms and some of these mechanisms might be more useful than others in establishing a chronic infection in CF patients, highlighting their importance for the clinical setting and the need for further studies on the less clinically characterized Achromobacter species.


Subject(s)
Achromobacter/classification , Achromobacter/genetics , Cystic Fibrosis/microbiology , Genome, Bacterial/genetics , Gram-Negative Bacterial Infections/microbiology , Persistent Infection/microbiology , Achromobacter/isolation & purification , Drug Resistance, Bacterial/genetics , Humans , Lung/microbiology , MutS Proteins/genetics , Virulence Factors/genetics , Whole Genome Sequencing , beta-Lactamases/genetics
6.
Microorganisms ; 9(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430044

ABSTRACT

Achromobacter spp. is an opportunistic pathogen that can cause lung infections in patients with cystic fibrosis (CF). Although a variety of mobile genetic elements (MGEs) carrying antimicrobial resistance genes have been identified in clinical isolates, little is known about the contribution of Achromobacter spp. mobilome to its pathogenicity. To provide new insights, we performed bioinformatic analyses of 54 whole genome sequences and investigated the presence of phages, insertion sequences (ISs), and integrative and conjugative elements (ICEs). Most of the detected phages were previously described in other pathogens and carried type II toxin-antitoxin systems as well as other pathogenic genes. Interestingly, the partial sequence of phage Bcep176 was found in all the analyzed Achromobacter xylosoxidans genome sequences, suggesting the integration of this phage in an ancestor strain. A wide variety of IS was also identified either inside of or in proximity to pathogenicity islands. Finally, ICEs carrying pathogenic genes were found to be widespread among our isolates and seemed to be involved in transfer events within the CF lung. These results highlight the contribution of MGEs to the pathogenicity of Achromobacter species, their potential to become antimicrobial targets, and the need for further studies to better elucidate their clinical impact.

7.
Microorganisms ; 8(4)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326629

ABSTRACT

Antimicrobial resistance is a major public health concern restricted not only to healthcare settings but also to veterinary and environmental ones. In this study, we analyzed, by whole genome sequencing (WGS) the resistome, mobilome and virulome of 12 multidrug-resistant (MDR) marine strains belonging to Shewanellaceae and Vibrionaceae families collected at aquaculture centers in Italy. The results evidenced the presence of several resistance mechanisms including enzyme and efflux pump systems conferring resistance to beta-lactams, quinolones, tetracyclines, macrolides, polymyxins, chloramphenicol, fosfomycin, erythromycin, detergents and heavy metals. Mobilome analysis did not find circular elements but class I integrons, integrative and conjugative element (ICE) associated modules, prophages and different insertion sequence (IS) family transposases. These mobile genetic elements (MGEs) are usually present in other aquatic bacteria but also in Enterobacteriaceae suggesting their transferability among autochthonous and allochthonous bacteria of the resilient microbiota. Regarding the presence of virulence factors, hemolytic activity was detected both in the Shewanella algae and in Vibrio spp. strains. To conclude, these data indicate the role as a reservoir of resistance and virulence genes in the environment of the aquatic microbiota present in the examined Italian fish farms that potentially might be transferred to bacteria of medical interest.

8.
Mar Pollut Bull ; 154: 111057, 2020 May.
Article in English | MEDLINE | ID: mdl-32174504

ABSTRACT

The aquatic environment can represent a reservoir of antimicrobial resistance genes. In the present study, phenotypical, biochemical and molecular techniques were used to screen a collection of marine strains isolated in Italian aquaculture farms to investigate their beta-lactam resistance profiles. The genome of 12 carbapenemase and/or beta-lactamase producing strains was sequenced and a phylogenetic analysis of the beta-lactamases found in their chromosomes was performed. Gene annotation and prediction revealed the presence of blaAmpC and blaOXA-55-like in all the Shewanella algae isolates whereas in Vibrio anguillarum and Vibrio parahaemolyticus strains, blaAmpC and blaCARB-19 were found, respectively. Multiple alignments of OXA-55-like and AmpC protein sequences showed different point mutations. Finally, comparisons between enzyme phylogeny and strain clusterization based on sampling sites and dates indicate the diffusion of specific Multi Drug Resistant (MDR) Shewanella algae clones along the Italian Adriatic coast.


Subject(s)
Aquaculture , Drug Resistance, Bacterial/genetics , Environmental Exposure/statistics & numerical data , Vibrio , Anti-Bacterial Agents , Genes, Bacterial , Humans , Italy , Microbial Sensitivity Tests , Phylogeny , Shewanella , beta-Lactamases
9.
Front Neurol ; 11: 618200, 2020.
Article in English | MEDLINE | ID: mdl-33519698

ABSTRACT

Background: Stroke is a leading cause of disability. Nonetheless, the care pathway for stroke rehabilitation takes partially into account the needs of chronic patients. This is due in part to the lack of evidence about the mechanisms of recovery after stroke, together with the poor knowledge of related and influencing factors. Here we report on the study protocol "Rehabilitation and Biomarkers of Stroke Recovery," which consists of 7 work-packages and mainly aim to investigate the effects of long-term neurorehabilitation on stroke patients and to define a related profile of (clinical-biological, imaging, neurophysiological, and genetic-molecular) biomarkers of long-term recovery after stroke. The work-package 1 will represent the main part of this protocol and aims to compare the long-term effects of intensive self-rehabilitation vs. usual (rehabilitation) care for stroke. Methods: We planned to include a total of 134 adult subacute stroke patients (no more than 3 months since onset) suffering from multidomain disability as a consequence of first-ever unilateral ischemic stroke. Eligible participants will be randomly assigned to one of the following groups: intensive self-rehabilitation (based on the principles of "Guided Self-Rehabilitation Contract") vs. usual care (routine practice). Treatment will last 1 year, and patients will be evaluated every 3 months according to their clinical presentation. The following outcomes will be considered in the main work-package: Fugl-Meyer assessment, Cognitive Oxford Screen Barthel Index, structural and functional neuroimaging, cortical excitability, and motor and somatosensory evoked potentials. Discussion: This trial will deal with the effects of an intensive self-management rehabilitation protocol and a related set of biomarkers. It will also investigate the role of training intensity on long-term recovery after stroke. In addition, it will define a set of biomarkers related to post-stroke recovery and neurorehabilitation outcome in order to detect patients with greater potential and define long-term individualized rehabilitation programs. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04323501.

10.
Cells ; 8(11)2019 11 01.
Article in English | MEDLINE | ID: mdl-31683926

ABSTRACT

Osteoarthritis (OA) is predominantly characterized by the progressive degradation of articular cartilage, the connective tissue produced by chondrocytes, due to an imbalance between anabolic and catabolic processes. In addition, physical activity (PA) is recognized as an important tool for counteracting OA. To evaluate PA effects on the chondrocyte lineage, we analyzed the expression of SOX9, COL2A1, and COMP in circulating progenitor cells following a half marathon (HM) performance. Therefore, we studied in-depth the involvement of metabolites affecting chondrocyte lineage, and we compared the metabolomic profile associated with PA by analyzing runners' sera before and after HM performance. Interestingly, this study highlighted that metabolites involved in vitamin B6 salvage, such as pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate, were highly modulated. To evaluate the effects of vitamin B6 in cartilage cells, we treated differentiated mesenchymal stem cells and the SW1353 chondrosarcoma cell line with vitamin B6 in the presence of IL1ß, the inflammatory cytokine involved in OA. Our study describes, for the first time, the modulation of the vitamin B6 salvage pathway following PA and suggests a protective role of PA in OA through modulation of this pathway.


Subject(s)
Cartilage/metabolism , Chondrocytes/metabolism , Exercise/physiology , Adult , Athletes , Cartilage/physiology , Cartilage Oligomeric Matrix Protein/analysis , Cartilage Oligomeric Matrix Protein/blood , Cartilage, Articular/metabolism , Cartilage, Articular/physiology , Cell Line , Cells, Cultured , Chondrocytes/physiology , Collagen Type II/analysis , Collagen Type II/blood , Drosophila Proteins/analysis , Drosophila Proteins/blood , Female , Humans , Interleukin-1beta , Male , Mesenchymal Stem Cells/drug effects , Metabolomics/methods , Middle Aged , Osteoarthritis/metabolism , Osteoarthritis/physiopathology , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/physiopathology , SOX9 Transcription Factor/analysis , SOX9 Transcription Factor/blood , Vitamin B 6/metabolism
11.
Eur J Pharmacol ; 859: 172494, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31238062

ABSTRACT

To better define the biological impact of immunosuppression on peripheral blood mononuclear cells (PBMC), we employed RNASeq analysis to compare the whole transcriptomic profile of a group of renal transplant recipients undergoing maintenance treatment with Everolimus (EVE) with those treated with Tacrolimus (TAC). Then, obtained results were validated by classical biomolecular methodologies. The statistical analysis allowed the identification of four genes discriminating the 2 study groups: Sushi Domain Containing 4 (SUSD4, P = 0.02), T Cell Leukemia/Lymphoma 1A (TCL1A, P = 0.02), adhesion G protein-coupled receptor E3 (ADGRE3, P = 0.01), Immunoglobulin Heavy Constant Gamma 3 (IGHG3, P = 0.03). All of them were significantly down-regulated in patients treated with EVE compared to TAC. The Area under Receiver Operating Characteristic (AUROC) of the final model based on these 4 genes was 73.1% demonstrating its good discriminative power. RT-PCR and ELISA validated transcriptomic results. Additionally, an in vitro model confirmed that EVE significantly down-regulates (P<0.001) TCL1A, SUSD4, ADGRE3 and IgHG3 in PBMCs as well as in T cells and monocytes isolated from healthy subjects. Taken together, our data, revealed, for the first time, a new four gene-based transcriptomic fingerprint down-regulated by EVE in PBMCs of renal transplant patients that could improve the available knowledge regarding some of the biological/cellular effects of the mTOR-Is (including their antineoplastic and immune-regulatory properties).


Subject(s)
Everolimus/pharmacology , Gene Expression Profiling , Immunosuppressive Agents/pharmacology , Kidney Transplantation/adverse effects , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Tacrolimus/pharmacology , Female , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , RNA-Seq
12.
Eur J Prev Cardiol ; 25(1_suppl): 42-50, 2018 06.
Article in English | MEDLINE | ID: mdl-29708032

ABSTRACT

Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. The study aimed at defining the peculiar morphologic and molecular changes occurring in the media layer of SNSTAAs. Design This study was based on a single centre design. Methods Media layer samples taken from seven carefully selected SNSTAAs and seven reference patients (controls) were investigated via quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, quantitative histology, and immunohistochemistry/immunofluorescence. Results In SNSTAAs media, aortic smooth muscle cells numbers were halved due to an apoptotic process coupled with a negligible cell proliferation. Cystathionine γ-lyase was diffusely up-regulated. Surviving aortic smooth muscle cells exhibited diverging phenotypes: in inner- and outer-media contractile cells prevailed, having higher contents of smooth-muscle-α-actin holoprotein (45-kDa) and of caspase-3-cleaved smooth-muscle-α-actin 25-kDa fragments; in mid-media, aortic smooth muscle cells exhibited a synthetic/secretor phenotype, down-regulating vimentin, but up-regulating glial fibrillary acidic protein, trans-Golgi network 46 protein, Jagged1 (172-kDa) holoprotein, and Jagged1's receptor Notch1. Extracellular soluble Jagged1 (42-kDa) fragments accumulated. Conclusions In SNSTAAs, there is a relentless aortic smooth muscle cells attrition caused by the up-regulated cystathionine γ-lyase. In mid-media, synthetic/secretor aortic smooth muscle cells intensify Jagged1/NOTCH1 signalling in the attempt to counterbalance the weakened aortic wall, due to aortic smooth muscle cells net loss and mechanical stress. Synthetic/secretor aortic smooth muscle cells are apoptosis-prone, and the accruing thrombin-cleaved Jagged1 fragments counteract the otherwise useful effects of Jagged1/NOTCH1 signalling, thus hampering tissue homeostasis/remodelling, and aortic smooth muscle cells adhesion, differentiation, and migration.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Gene Expression Regulation , Jagged-1 Protein/genetics , Muscle, Smooth, Vascular/metabolism , RNA/genetics , Receptor, Notch1/genetics , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Apoptosis , Blotting, Western , Cell Proliferation , Down-Regulation , Female , Homeostasis , Humans , Jagged-1 Protein/biosynthesis , Male , Muscle, Smooth, Vascular/pathology , Phenotype , Polymerase Chain Reaction , Receptor, Notch1/biosynthesis , Retrospective Studies , Signal Transduction
13.
Eur J Prev Cardiol ; 25(1_suppl): 51-58, 2018 06.
Article in English | MEDLINE | ID: mdl-29708036

ABSTRACT

Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. Here, we focused on morphologic and molecular changes of the extracellular matrix of the tunica media of SNSTAAs. Design Single centre design. Methods Surgical media samples from seven SNSTAAs and seven controls underwent quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, histology and immunohistochemistry analysis. Results A down-regulation of Decorin mRNA with unchanged protein levels associated with a remarkable increase of collagen fibres. A reduced and distorted network of elastic fibres partnered with an attenuated expression of microfibril-associated glycoprotein1 despite the rise of MFAP2 gene-encoded mRNA levels. An increasingly proteolysed paxillin (55 kDa PXN), a focal adhesion protein, combined with an upregulated 62 kDa PXN holoprotein, without changes in amount and phosphorylation of focal adhesion kinase (pp125FAK). The upregulation of SPOCK2-encoded Testican2 proteoglycan and of ectodysplasin (EDA) protein was coupled with a down-regulation of EDA2 receptor (EDA2R). Conclusions Several tunica media extracellular matrix-related changes favour SNSTAA development. A steady level of decorin and a microfibril-associated glycoprotein1 protein shortage cause the assembly of structurally defective collagen and elastic fibres. Up-regulation of PXN holoproteins perturbs PXN/pp125FAK interaction and focal adhesion functioning. Testican2 up-regulation suppresses the membrane-type matrix metalloproteinase inhibiting activities of other SPOCK family members thus enhancing extracellular matrix proteolysis. Finally, the altered EDA•EDA2R signalling would impact on the remodelling of SNSTAA tunica media. Altogether, our results pave the way to a deeper molecular understanding of SNSTAAs necessary to identify their early diagnostic biochemical markers.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Decorin/genetics , Extracellular Matrix/metabolism , Focal Adhesions/metabolism , Gene Expression Regulation , Proteoglycans/genetics , Xedar Receptor/genetics , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Decorin/biosynthesis , Extracellular Matrix/pathology , Humans , Immunoblotting , Immunohistochemistry , Polymerase Chain Reaction , Proteoglycans/biosynthesis , RNA/genetics , Xedar Receptor/biosynthesis
14.
BMC Genomics ; 10: 13, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19134193

ABSTRACT

BACKGROUND: Atherosclerosis affects aorta, coronary, carotid, and iliac arteries most frequently than any other body vessel. There may be common molecular pathways sustaining this process. Plaque presence and diffusion is revealed by circulating factors that can mediate systemic reaction leading to plaque rupture and thrombosis. RESULTS: We used DNA microarrays and meta-analysis to study how the presence of calcified plaque modifies human coronary and carotid gene expression. We identified a series of potential human atherogenic genes that are integrated in functional networks involved in atherosclerosis. Caveolae and JAK/STAT pathways, and S100A9/S100A8 interacting proteins are certainly involved in the development of vascular disease. We found that the system of caveolae is directly connected with genes that respond to hormone receptors, and indirectly with the apoptosis pathway. Cytokines, chemokines and growth factors released in the blood flux were investigated in parallel. High levels of RANTES, IL-1ra, MIP-1 alpha, MIP-1 beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-17, PDGF-BB, VEGF and IFN-gamma were found in plasma of atherosclerotic patients and might also be integrated in the molecular networks underlying atherosclerotic modifications of these vessels. CONCLUSION: The pattern of cytokine and S100A9/S100A8 up-regulation characterizes atherosclerosis as a proinflammatory disorder. Activation of the JAK/STAT pathway is confirmed by the up-regulation of IL-6, STAT1, ISGF3G and IL10RA genes in coronary and carotid plaques. The functional network constructed in our research is an evidence of the central role of STAT protein and the caveolae system to contribute to preserve the plaque. Moreover, Cav-1 is involved in SMC differentiation and dyslipidemia confirming the importance of lipid homeostasis in the atherosclerotic phenotype.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/metabolism , Carotid Arteries/metabolism , Coronary Vessels/metabolism , Adult , Aged , Calgranulin A/metabolism , Calgranulin B/metabolism , Caveolae/metabolism , Cytokines/blood , Female , Gene Expression , Gene Expression Profiling , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , STAT Transcription Factors/metabolism , Up-Regulation
15.
Eur J Hum Genet ; 11(1): 93-6, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12529713

ABSTRACT

Neonatal hypertrypsinaemia with normal sweat chloride detected during CF screening may be related to trypsin activation. We have looked for mutations of the cationic trypsinogen (PRSS1) and pancreatic secretory trypsin inhibitor (PSTI) genes in 50 hypertrypsinaemic neonates with known CFTR genotypes and negative sweat test. No mutations were found in either gene. Two silent polymorphisms were detected in the PRSS1 gene. A polymorphism in the promoter region and an intronic polymorphism of the PSTI gene were found. No difference was observed in the frequency of PRSS1 or PSTI polymorphisms in neonates carrying or not carrying CF mutations. These results do not provide an indication for an increased frequency of mutations in the PRSS1 and PSTI genes in this group of neonates with transient hypertrypsinaemia.


Subject(s)
Growth Substances/genetics , Intercellular Signaling Peptides and Proteins/genetics , Mutation , Trypsin/blood , Trypsinogen/genetics , Carrier Proteins , Cations , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genetic Predisposition to Disease , Humans , Infant, Newborn , Italy , Neonatal Screening/methods , Polymorphism, Genetic , Sweat/physiology , Trypsin Inhibitor, Kazal Pancreatic
SELECTION OF CITATIONS
SEARCH DETAIL
...