Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 188(3): 322-331, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-31950175

ABSTRACT

AIM OF THE STUDY: The aim of this study was to describe a new functionality aimed at X-ray dose reduction, referred to as spot region of interest (Spot ROI) and to compare it with existing dose-saving functionalities, spot fluoroscopy (Spot F), and conventional collimation (CC). MATERIAL AND METHODS: Dose area product, air kerma, and peak skin dose were measured for Spot ROI, Spot F, and CC in three different fields of view (FOVs) 20 × 20 cm, 15 × 15 cm, and 11 × 11 cm using an anthropomorphic head phantom RS-230T. The exposure sequence was 5 min of pulsed fluoroscopy (7.5 pulses per s) followed by 7× digital subtraction angiography (DSA) runs with 30 frames per DSA acquisition (3 fps × 10 s). The collimation in Spot F and CC was adjusted such that the size of the anatomical area exposed was as large as the Spot ROI area in each FOV. RESULTS: The results for all FOVs were the following: for the fluoroscopy, all measured parameters for Spot ROI and Spot F were lower than corresponding values for CC. For DSA and DSA plus fluoroscopy, all measured parameters for Spot ROI were lower than corresponding parameters for Spot F and CC. CONCLUSION: Spot ROI is a promising dose-saving technology that can be applied in fluoroscopy and acquisition. The biggest benefit of Spot ROI is its ability to keep the entire FOV information always visible.


Subject(s)
Drug Tapering , Angiography, Digital Subtraction , Fluoroscopy , Radiation Dosage , X-Rays
2.
Interv Neuroradiol ; 23(6): 669-675, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28944706

ABSTRACT

Aim of the study A new functionality that enables vertical mobility of the lateral arm of a biplane angiographic machine is referred to as the flexible lateral isocenter. The aim of this study was to analyze the impact of the flexible lateral isocenter on the air-kerma rate under experimental conditions. Material and methods An anthropomorphic head-and-chest phantom with anteroposterior (AP) diameter of the chest varying from 22 cm to 30 cm simulated human bodies of different body constitutions. The angulation of the AP arm in the sagittal plane varied from 35 degrees to 55 degrees for each AP diameter. The air-kerma rate (mGy/min) values were read from the system dose display in two settings for each angle: flexible lateral isocenter and fixed lateral isocenter. Results The air-kerma rate was significantly lower for all AP diameters of the chest of the phantom when the flexible lateral isocenter was used: (a) For 22 cm, the p value was 0.028; (b) For 25 cm, the p value was 0.0169; (c) For 28 cm, the p value was 0.01005 and (d) For 30 cm, the p value was 0.01703. Conclusion Our results show that the flexible lateral isocenter contributes significantly to the reduction of the air-kerma rate, and thus to a safer environment in terms of dose lowering both for patients and staff.


Subject(s)
Cerebral Angiography/instrumentation , Equipment Design , Humans , Phantoms, Imaging , Radiation Dosage
3.
Acta Radiol ; 58(5): 600-608, 2017 May.
Article in English | MEDLINE | ID: mdl-27522095

ABSTRACT

Background Increased interest in radiation dose reduction in neurointerventional procedures has led to the development of a method called "spot fluoroscopy" (SF), which enables the operator to collimate a rectangular or square region of interest anywhere within the general field of view. This has potential advantages over conventional collimation, which is limited to symmetric collimation centered over the field of view. Purpose To evaluate the effect of SF on the radiation dose. Material and Methods Thirty-five patients with intracranial aneurysms were treated with endovascular coiling. SF was used in 16 patients and conventional fluoroscopy in 19. The following parameters were analyzed: the total fluoroscopic time, the total air kerma, the total fluoroscopic dose-area product, and the fluoroscopic dose-area product rate. Statistical differences were determined using the Welch's t-test. Results The use of SF led to a reduction of 50% of the total fluoroscopic dose-area product (CF = 106.21 Gycm2, SD = 99.06 Gycm2 versus SF = 51.80 Gycm2, SD = 21.03 Gycm2, p = 0.003884) and significant reduction of the total fluoroscopic dose-area product rate (CF = 1.42 Gycm2/min, SD = 0.57 Gycm2/s versus SF = 0.83 Gycm2/min, SD = 0.37 Gycm2/min, p = 0.00106). The use of SF did not lead to an increase in fluoroscopy time or an increase in total fluoroscopic cumulative air kerma, regardless of collimation. Conclusion The SF function is a new and promising tool for reduction of the radiation dose during neurointerventional procedures.


Subject(s)
Intracranial Aneurysm/diagnostic imaging , Radiation Dosage , Radiation Injuries/prevention & control , Radiography, Interventional/methods , Brain/diagnostic imaging , Female , Fluoroscopy , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...