Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 9(12): e113923, 2014.
Article in English | MEDLINE | ID: mdl-25438048

ABSTRACT

The circumsporozoite protein (CSP) is the major surface protein of the sporozoite stage of malaria parasites and has multiple functions as the parasite develops and then migrates from the mosquito midgut to the mammalian liver. The overall structure of CSP is conserved among Plasmodium species, consisting of a species-specific central tandem repeat region flanked by two conserved domains: the NH2-terminus and the thrombospondin repeat (TSR) at the COOH-terminus. Although the central repeat region is an immunodominant B-cell epitope and the basis of the only candidate malaria vaccine in Phase III clinical trials, little is known about its functional role(s). We used the rodent malaria model Plasmodium berghei to investigate the role of the CSP tandem repeat region during sporozoite development. Here we describe two mutant parasite lines, one lacking the tandem repeat region (ΔRep) and the other lacking the NH2-terminus as well as the repeat region (ΔNΔRep). We show that in both mutant lines oocyst formation is unaffected but sporozoite development is defective.


Subject(s)
Malaria/parasitology , Plasmodium berghei/growth & development , Protozoan Proteins/metabolism , Sporozoites/growth & development , Animals , Plasmodium berghei/chemistry , Plasmodium berghei/genetics , Plasmodium berghei/ultrastructure , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Deletion , Sporozoites/chemistry , Sporozoites/metabolism , Sporozoites/ultrastructure
2.
Cell Host Microbe ; 16(1): 128-40, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-25011111

ABSTRACT

Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria.


Subject(s)
Gene Expression Regulation , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Plasmodium berghei/enzymology , Plasmodium berghei/growth & development , Animals , Female , Gene Knockout Techniques , Mice , Plasmodium falciparum/enzymology
3.
PLoS One ; 9(5): e96923, 2014.
Article in English | MEDLINE | ID: mdl-24805991

ABSTRACT

With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/genetics , Malaria, Falciparum/genetics , Plasmodium berghei/genetics , Plasmodium falciparum/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Antimalarials/therapeutic use , Culicidae/genetics , Culicidae/parasitology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/biosynthesis , Gene Expression Regulation, Enzymologic , Malaria, Falciparum/parasitology , Malaria, Falciparum/therapy , Molecular Targeted Therapy , Plasmodium berghei/enzymology , Plasmodium berghei/pathogenicity , Plasmodium falciparum/enzymology , Plasmodium falciparum/pathogenicity
4.
Biol Open ; 2(11): 1160-70, 2013.
Article in English | MEDLINE | ID: mdl-24244852

ABSTRACT

The phylum Apicomplexa comprises over 5000 intracellular protozoan parasites, including Plasmodium and Toxoplasma, that are clinically important pathogens affecting humans and livestock. Malaria parasites belonging to the genus Plasmodium possess a pellicle comprised of a plasmalemma and inner membrane complex (IMC), which is implicated in parasite motility and invasion. Using live cell imaging and reverse genetics in the rodent malaria model P. berghei, we localise two unique IMC sub-compartment proteins (ISPs) and examine their role in defining apical polarity during zygote (ookinete) development. We show that these proteins localise to the anterior apical end of the parasite where IMC organisation is initiated, and are expressed at all developmental stages, especially those that are invasive. Both ISP proteins are N-myristoylated, phosphorylated and membrane-bound. Gene disruption studies suggest that ISP1 is likely essential for parasite development, whereas ISP3 is not. However, an absence of ISP3 alters the apical localisation of ISP1 in all invasive stages including ookinetes and sporozoites, suggesting a coordinated function for these proteins in the organisation of apical polarity in the parasite.

5.
Cell Rep ; 3(3): 622-9, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23434509

ABSTRACT

Signaling pathways controlled by reversible protein phosphorylation (catalyzed by kinases and phosphatases) in the malaria parasite Plasmodium are of great interest, for both increased understanding of parasite biology and identification of novel drug targets. Here, we report a functional analysis in Plasmodium of an ancient bacterial Shewanella-like protein phosphatase (SHLP1) found only in bacteria, fungi, protists, and plants. SHLP1 is abundant in asexual blood stages and expressed at all stages of the parasite life cycle. shlp1 deletion results in a reduction in ookinete (zygote) development, microneme formation, and complete ablation of oocyst formation, thereby blocking parasite transmission. This defect is carried by the female gamete and can be rescued by direct injection of mutant ookinetes into the mosquito hemocoel, where oocysts develop. This study emphasizes the varied functions of SHLP1 in Plasmodium ookinete biology and suggests that it could be a novel drug target for blocking parasite transmission.


Subject(s)
Phosphoprotein Phosphatases/metabolism , Plasmodium berghei/enzymology , Protozoan Proteins/metabolism , Amino Acid Sequence , Gene Deletion , Germ Cells/enzymology , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/pathogenicity , Protozoan Proteins/genetics , Spores, Protozoan/enzymology , Spores, Protozoan/growth & development , Virulence/genetics , Zygote/enzymology
6.
Antioxid Redox Signal ; 19(7): 683-95, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23256874

ABSTRACT

AIMS: Chloroquine (CQ) kills Plasmodium falciparum by binding heme, preventing its detoxification to hemozoin in the digestive vacuole (DV) of the parasite. CQ resistance (CQR) is associated with mutations in the DV membrane protein P. falciparum chloroquine resistance transporter (PfCRT), mediating the leakage of CQ from the DV. However, additional factors are thought to contribute to the resistance phenotype. This study tested the hypothesis that there is a link between glutathione (GSH) and CQR. RESULTS: Using isogenic parasite lines carrying wild-type or mutant pfcrt, we reveal lower levels of GSH in the mutant lines and enhanced sensitivity to the GSH synthesis inhibitor l-buthionine sulfoximine, without any alteration in cytosolic de novo GSH synthesis. Incubation with N-acetylcysteine resulted in increased GSH levels in all parasites, but only reduced susceptibility to CQ in PfCRT mutant-expressing lines. In support of a heme destruction mechanism involving GSH in CQR parasites, we also found lower hemozoin levels and reduced CQ binding in the CQR PfCRT-mutant lines. We further demonstrate via expression in Xenopus laevis oocytes that the mutant alleles of Pfcrt in CQR parasites selectively transport GSH. INNOVATION: We propose a mechanism whereby mutant pfcrt allows enhanced transport of GSH into the parasite's DV. The elevated levels of GSH in the DV reduce the level of free heme available for CQ binding, which mediates the lower susceptibility to CQ in the PfCRT mutant parasites. CONCLUSION: PfCRT has a dual role in CQR, facilitating both efflux of harmful CQ from the DV and influx of beneficial GSH into the DV.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Glutathione/metabolism , Membrane Transport Proteins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Acetylcysteine/pharmacology , Animals , Antimalarials/metabolism , Biological Transport , Cells, Cultured , Chloroquine/metabolism , Drug Resistance , Erythrocytes/metabolism , Erythrocytes/parasitology , Free Radical Scavengers/pharmacology , Gene Expression , Glutathione Synthase/genetics , Glutathione Synthase/metabolism , Hemeproteins/metabolism , Humans , Plasmodium falciparum/drug effects , Protein Transport , Xenopus laevis
7.
PLoS Pathog ; 8(9): e1002948, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028336

ABSTRACT

Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl(-) mutants, with global phosphorylation studies of ookinete differentiation from 1.5-24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission.


Subject(s)
Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/metabolism , Plasmodium berghei/enzymology , Plasmodium berghei/growth & development , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Alveolata/chemistry , Alveolata/genetics , Amino Acid Motifs , Animals , Anopheles/parasitology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Base Sequence , Cell Differentiation , Genes, Protozoan , Malaria/parasitology , Mice , Mice, Inbred C57BL , Phosphoprotein Phosphatases/genetics , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Protozoan Proteins/genetics , Sequence Analysis, DNA , Viridiplantae/chemistry
8.
Mol Microbiol ; 83(2): 304-18, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22151036

ABSTRACT

Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG.


Subject(s)
Biosynthetic Pathways/genetics , Glutathione/biosynthesis , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Biological Transport , Buthionine Sulfoximine/toxicity , Cell Survival/drug effects , Gene Deletion , Genes, Essential , Plasmodium falciparum/drug effects
9.
Malar J ; 10: 193, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21756354

ABSTRACT

BACKGROUND: Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target. METHODS: The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated. RESULTS: No growth defect under low and elevated oxygen tension, no up- or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10Δgdha parasite lines. Further, the fate of the carbon skeleton of [13C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of α-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites. CONCLUSIONS: First, the data support the conclusion that D10Δgdha parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)-dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.


Subject(s)
Gene Deletion , Glutamate Dehydrogenase/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Glutamate Dehydrogenase/genetics , Oxidants/metabolism , Oxidants/toxicity , Oxidative Stress , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development
10.
Bioorg Med Chem Lett ; 18(20): 5399-401, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18829314

ABSTRACT

Efficient synthetic routes have been developed for the preparation of two new polyazamacrocycles tagged with structural motifs recognised by the Trypanosoma brucei P2 aminopurine transporter. Biological testing of these compounds showed highly selective anti-protozoal activity against trypanosomes.


Subject(s)
Antiprotozoal Agents/pharmacology , Benzamidines/chemistry , Chemistry, Pharmaceutical/methods , Guanidine/chemistry , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/metabolism , Amino Acid Motifs , Animals , Biological Transport , Cell Line , Drug Design , Humans , Models, Chemical , Plasmodium falciparum/metabolism , Purines/chemistry
11.
Bioorg Med Chem Lett ; 18(7): 2455-8, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18313921

ABSTRACT

A focused library of C2-substituted-1,4,7,10-tetraazacyclododecanes was synthesised and the compounds were tested for their ability to kill trypanosome and malaria parasites. Several compounds showed significant in vitro activity and were selectively active against the parasites over human embryonic kidney cells used as a counter screen.


Subject(s)
Antiprotozoal Agents/therapeutic use , Aza Compounds/therapeutic use , Kidney/drug effects , Macrocyclic Compounds/therapeutic use , Malaria/drug therapy , Trypanosoma/drug effects , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Aza Compounds/chemical synthesis , Aza Compounds/pharmacology , Humans , Kidney/cytology , Kidney/embryology , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacology , Malaria/parasitology , Models, Chemical , Parasitic Sensitivity Tests , Structure-Activity Relationship
12.
PLoS Pathog ; 3(12): e189, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18069893

ABSTRACT

Lipoic acid (LA) is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs) and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB) and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1). Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%). Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2). Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.


Subject(s)
Lipoproteins/metabolism , Organelles/enzymology , Peptide Synthases/physiology , Plasmodium falciparum/enzymology , Protozoan Proteins/physiology , Thioctic Acid/metabolism , Animals , DNA, Protozoan/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation , Gene Silencing , Genes, Protozoan/genetics , Lipoproteins/chemistry , Lipoproteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Trophozoites/growth & development , Trophozoites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...