Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 277: 724-33, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25106130

ABSTRACT

A previous study investigating potential adult hippocampal neurogenesis in microchiropteran bats failed to reveal a strong presence of this neural trait. As microchiropterans have a high field metabolic rate and a small body mass, it is possible that capture/handling stress may lead to a decrease in the detectable presence of adult hippocampal neurogenesis. Here we looked for evidence of adult hippocampal neurogenesis using immunohistochemical techniques for the endogenous marker doublecortin (DCX) in 10 species of microchiropterans euthanized and perfusion fixed at specific time points following capture. Our results reveal that when euthanized and perfused within 15 min of capture, abundant putative adult hippocampal neurogenesis could be detected using DCX immunohistochemistry. Between 15 and 30 min post-capture, the detectable levels of DCX dropped dramatically and after 30 min post-capture, immunohistochemistry for DCX could not reveal any significant evidence of putative adult hippocampal neurogenesis. Thus, as with all other mammals studied to date apart from cetaceans, bats, including both microchiropterans and megachiropterans, appear to exhibit substantial levels of adult hippocampal neurogenesis. The present study underscores the concept that, as with laboratory experiments, studies conducted on wild-caught animals need to be cognizant of the fact that acute stress (capture/handling) may induce major changes in the appearance of specific neural traits.


Subject(s)
Chiroptera/physiology , Hippocampus/physiopathology , Microtubule-Associated Proteins/metabolism , Neurogenesis/physiology , Neurons/physiology , Neuropeptides/metabolism , Stress, Psychological/physiopathology , Animals , Caudate Nucleus/physiopathology , Doublecortin Domain Proteins , Housing, Animal , Immunohistochemistry , Neocortex/physiopathology , Photomicrography , Restraint, Physical , Species Specificity , Time Factors
2.
Neuroscience ; 244: 159-72, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23597831

ABSTRACT

The present study evaluated, using immunohistochemical methods, the presence and characteristics of proliferating and newly generated neurons in the brain of eight wild-caught adult Megachiropteran species. For the neurogenic patterns observed, direct homologies are evident in other mammalian species; however, there were several distinctions in the presence or absence of proliferating and immature neurons, and migratory streams that provide important clues regarding the use of the brain in the analysis of Chiropteran phylogenetic affinities. In all eight species studied, numerous Ki-67- and doublecortin (DCX)-immunopositive cells were identified in the subventricular zone (SVZ). These cells migrated to the olfactory bulb through a Primate-like rostral migratory stream (RMS) that is composed of dorsal and ventral substreams which merge before entering the olfactory bulb. Some cells were observed emerging from the RMS coursing caudally and dorsally to the rostral neocortex. In the dentate gyrus of all species, Ki-67- and DCX-expressing cells were observed in the granular cell layer and hilus. Similar to Primates, proliferating cells and immature neurons were identified in the SVZ of the temporal horn of Megachiropterans. These cells migrated to the rostral and caudal piriform cortex through a Primate-like temporal migratory stream. Sparsely distributed Ki-67-immunopositive, but DCX-immunonegative, cells were identified in the tectum, brainstem and cerebellum. The observations from this study add to a number of neural characteristics that phylogenetically align Megachiropterans to Primates.


Subject(s)
Brain/physiology , Chiroptera/physiology , Neurogenesis/physiology , Animals , Brain/cytology , Cell Movement/physiology , Cell Proliferation , Species Specificity
3.
Neuroscience ; 238: 270-9, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23485806

ABSTRACT

Adult neurogenesis in mammals is typically observed in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone. We investigated adult neurogenesis in the brain of a giant otter shrew (Potamogale velox), a semi-aquatic, central African rainforest mammal of the family Tenrecidae that belongs to the superorder Afrotheria. We examined neurogenesis immunohistochemically, using the endogenous marker doublecortin (DCX), which stains neuronal precursor cells and immature neurons. Our results revealed densely packed DCX-positive cells in the entire extent of the subventricular zone from where cells migrated along the rostral migratory stream to the olfactory bulb. In the olfactory bulb, DCX-expressing cells were primarily present in the granular cell layer with radially orientated dendrites and in the glomerular layer representing periglomerular cells. In the hippocampus, DCX-positive cells were identified in the subgranular and granular layers of the dentate gyrus and strongly labelled DCX-positive processes, presumably dendrites and axons of the newly generated granular cells, were observed in the CA3 regions. In addition, DCX immunoreactive cells were present in the olfactory tubercle, the piriform cortex and the endopiriform nucleus. While DCX-positive fibres have been previously observed in the anterior commissure of the hedgehog and mole, we were able to demonstrate the presence of DCX-positive cells presumably migrating across the anterior commissure. Taken together, the giant otter shrew reveals patterns of neurogenesis similar to that seen in other mammals; however, the appearance of possible neuronal precursor cells in the anterior commissure is a novel observation.


Subject(s)
Adult Stem Cells/physiology , Dentate Gyrus/physiology , Mammals/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Adult Stem Cells/cytology , Animals , Axons/physiology , Dendrites/physiology , Dentate Gyrus/cytology , Hippocampus/cytology , Hippocampus/physiology , Neural Stem Cells/cytology , Neurons/cytology , Neurons/physiology , Olfactory Bulb/cytology , Olfactory Bulb/physiology
4.
Neuroscience ; 194: 53-61, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21846495

ABSTRACT

Pigeons use olfactory cues to navigate over unfamiliar areas, and any impairment of the olfactory system generates remarkable reduction of homing performance. Lesion and deprivation studies suggest a critical involvement of the right nostril and thus, the right olfactory bulb (OB) and the left piriform cortex (CPi) for initial orientation. This functional pattern suggests that OB and CPi are asymmetrically connected with a stronger projection from the right OB to the left CPi. However, the structural organization of the olfactory system is not unequivocally clarified yet. Thus, we re-analyzed the system by antero- and retrograde tract tracing with biotinylated dextran amine and choleratoxin subunit B, and we especially evaluated quantitative differences in the number of cells in the OB innervating the left and right CPi. Our anterograde tracing data verified a strong bilateral input to the CPi, and the prepiriform cortex (CPP), as well as small projections to the ipsilateral medial septum and the dorsolateral corticoid area and the nucleus taeniae of the amygdala in both hemispheres. Apart from the bilateral bulbar afferents, CPi in turn receives unequivocal input from the ipsilateral CPP, hyperpallium densocellulare, dorsal arcopallium, and from a cluster of cells located within the frontolateral nidopallium. Thus, an indirect connection between OB and CPi is only mediated by the CPP. For quantitative analysis of bulbar input to the CPi, we counted the number of ipsi- and contralaterally projecting neurons located in the OB after injections into the left or right CPi. Retrogradely labeled cells were found bilaterally in the OB with a higher number of ipsilaterally located cells. The bilaterality index did not differ after left- or right-sided CPi injections indicating that the functional lateralization of the olfactory system is not simply based on differences in the number of projecting axons of the major processing stream.


Subject(s)
Animal Migration/physiology , Columbidae/anatomy & histology , Columbidae/physiology , Olfactory Pathways/anatomy & histology , Olfactory Pathways/physiology , Olfactory Perception/physiology , Telencephalon/anatomy & histology , Telencephalon/physiology , Animals , Female , Male , Neuroanatomical Tract-Tracing Techniques/methods , Neuronal Tract-Tracers
5.
J Chem Neuroanat ; 37(3): 141-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19135145

ABSTRACT

The aim of this study was to analyze the impact of physical and social stress on the avian forebrain morphology. Therefore, we used laying hens kept in different housing systems from puberty (approximately 16 weeks old) until the age of 48 weeks: battery cages, small littered ground pen, and free range system. Cell body sizes and catecholaminergic and serotonergic innervation patterns were investigated in brain areas expected to be sensitive to differences in environmental stimulation: hippocampal substructures and the nidopallium caudolaterale (NCL), a functional analogue of the prefrontal cortex. Our analysis shows both structures differing in the affected morphological parameters. Compared to battery cage hens, hens in the free range system developed larger cells in the dorsomedial hippocampus. Only these animals exhibited an asymmetry in the tyrosine hydroxylase density with more fibres in the left dorsomedial hippocampus. We assume that the higher spatial complexity of the free range system is the driving force of these changes. In contrast, in the NCL the housing systems affected only the serotonergic innervation pattern with highest fibre densities in free range hens. Moreover hens of the free range system displayed the worst plumage condition, which most likely is caused by feather pecking causing an altered serotonergic innervation pattern. Considering the remarkable differences between the three housing conditions, their effects on hippocampal structures and the NCL were surprisingly mild. This observation suggests that the adult brain of laying hens displays limited sensitivity to differences in social and physical environment induced post-puberty, which warrants further studies.


Subject(s)
Brain/anatomy & histology , Chickens/anatomy & histology , Housing, Animal , Agriculture , Animal Welfare , Animals , Brain/cytology , Catecholamines/physiology , Data Interpretation, Statistical , Feathers/anatomy & histology , Female , Hippocampus/anatomy & histology , Hippocampus/cytology , Immunohistochemistry , Neuronal Plasticity , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/cytology , Serotonin/physiology , Social Environment , Stress, Psychological/psychology , Tissue Fixation
6.
Neuroscience ; 144(2): 645-53, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17084536

ABSTRACT

Birds display hemispheric specific modes of visual processing with a dominance of the right eye/left hemisphere for detailed visual object analysis. In pigeons, this behavioral lateralization is accompanied by morphological left-right differences in the ascending tectofugal pathway. This system is also asymmetrically modulated by descending telencephalotectal input whereby the left forebrain displays a much more pronounced physiological control over ipsilateral left and contralateral right visual thalamic processes. In the present study we aimed to answer the question if this top-down asymmetry that up to now had been demonstrated in single cell recording studies is due to anatomical asymmetries in the size of the fiber systems descending from the telencephalon to the tectum. We approached this question by means of a quantitative retrograde tracing study. Cholera toxin subunit B (CtB) was injected unilaterally into either the left or right optic tectum of adult pigeons. After immunohistochemical detection of CtB-positive cells, the number of ipsi- and contralaterally projecting neurons was estimated. Retrogradely labeled cells were located within the arcopallium, the hyperpallium apicale (HA) and the temporo-parieto-occipital area (TPO). Descending projections from HA, arcopallium, and TPO were mainly or exclusively ipsilateral with the contralateral projection being extremely small. Moreover, there was no difference between left and right hemispheric projections. These anatomical data sharply contrast with behavioral and electrophysiological ones which reveal an asymmetric and bilateral top down control. Therefore, contralateral and lateralized forebrain influences onto tectofugal processing are possibly not the direct result of asymmetrical descending axon numbers. Those influences emerge by a lateralized intra- and/or interhemispheric integration of ascending and descending input onto the rotundus.


Subject(s)
Columbidae/anatomy & histology , Functional Laterality , Telencephalon/anatomy & histology , Visual Pathways/physiology , Animals , Cell Count , Cholera Toxin/metabolism , Columbidae/physiology , Statistics, Nonparametric , Telencephalon/physiology
7.
Nature ; 444(7117): 286, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17108950

ABSTRACT

The steel of Damascus blades, which were first encountered by the Crusaders when fighting against Muslims, had features not found in European steels--a characteristic wavy banding pattern known as damask, extraordinary mechanical properties, and an exceptionally sharp cutting edge. Here we use high-resolution transmission electron microscopy to examine a sample of Damascus sabre steel from the seventeenth century and find that it contains carbon nanotubes as well as cementite nanowires. This microstructure may offer insight into the beautiful banding pattern of the ultrahigh-carbon steel created from an ancient recipe that was lost long ago.

SELECTION OF CITATIONS
SEARCH DETAIL
...