Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1336513, 2024.
Article in English | MEDLINE | ID: mdl-38504885

ABSTRACT

Most food crops are susceptible to necrotrophic bacteria that cause rotting and wilting diseases in fleshy organs and foods. All varieties of cultivated potato (Solanum tuberosum L.) are susceptible to diseases caused by Pectobacterium species, but resistance has been demonstrated in wild potato relatives including S. chacoense. Previous studies demonstrated that resistance is in part mediated by antivirulence activity of phytochemicals in stems and tubers. Little is known about the genetic basis of antivirulence traits, and the potential for inheritance and introgression into cultivated potato is unclear. Here, the metabolites and genetic loci associated with antivirulence traits in S. chacoense were elucidated by screening a sequenced S. tuberosum x S. chacoense recombinant inbred line (RIL) population for antivirulence traits of its metabolite extracts. Metabolite extracts from the RILs exhibited a quantitative distribution for two antivirulence traits that were positively correlated: quorum sensing inhibition and exo-protease inhibition, with some evidence of transgressive segregation, supporting the role of multiple loci and metabolites regulating these resistance-associated systems. Metabolomics was performed on the highly resistant and susceptible RILs that revealed 30 metabolites associated with resistance, including several alkaloids and terpenes. Specifically, several prenylated metabolites were more abundant in resistant RILs. We constructed a high-density linkage map with 795 SNPs mapped to 12 linkage groups, spanning a length of 1,507 cM and a density of 1 marker per 1.89 cM. Genetic mapping of the antivirulence and metabolite data identified five quantitative trait loci (QTLs) related to quorum sensing inhibition that explained 8-28% of the phenotypic variation and two QTLs for protease activity inhibition that explained 14-19% of the phenotypic variation. Several candidate genes including alkaloid, and secondary metabolite biosynthesis that are related to disease resistance were identified within these QTLs. Taken together, these data support that quorum sensing inhibition and exo-protease inhibition assays may serve as breeding targets to improve resistance to nectrotrophic bacterial pathogens in potato and other plants. The identified candidate genes and metabolites can be utilized in marker assisted selection and genomic selection to improve soft- rot and blackleg disease resistance.

2.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37974306

ABSTRACT

Flower color plays a crucial role in the appeal and selection of ornamental plants, directly influencing breeding strategies and the broader horticulture industry. Lantana camara, a widely favored flowering shrub, presents a rich palette of flower colors. Yet, the intricate molecular mechanisms governing this color variation in the species have remained largely unidentified. With the aim of filling this gap, this study embarked on a comprehensive de novo transcriptome assembly and differential gene expression analysis across 3 distinct lantana accessions, each showcasing a unique flower color. By harnessing the capabilities of both PacBio and Illumina sequencing platforms, a robust transcriptome assembly, encompassing 123,492 gene clusters and boasting 94.2% BUSCO completeness, was developed. The differential expression analysis unveiled 72,862 unique gene clusters that exhibited varied expression across different flower stages. A pronounced upregulation of 8 candidate core anthocyanin biosynthesis genes in the red-flowered accession was uncovered. This was further complemented by an upregulation of candidate MYB75 (PAP1) and bHLH42 (TT8) transcription factors. A candidate carotenoid cleavage dioxygenase (CCD4a) gene cluster also manifested a marked upregulation in white flowers. The study unveils the molecular groundwork of lantana's flower color variation, offering insights for future research and potential applications in breeding ornamental plants with desired color traits.


Subject(s)
Anthocyanins , Lantana , Lantana/genetics , Lantana/metabolism , Gene Expression Regulation, Plant , Pigmentation/genetics , Plant Breeding , Gene Expression Profiling , Transcriptome , Flowers/genetics , Flowers/metabolism , Color
3.
Environ Microbiome ; 18(1): 60, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464442

ABSTRACT

Legumes such as peanut (Arachis hypogea) can fulfill most of their nitrogen requirement by symbiotic association with nitrogen-fixing bacteria, rhizobia. Nutrient availability is largely determined by microbial diversity and activity in the rhizosphere that influences plant health, nutrition, and crop yield, as well as soil quality and soil fertility. However, our understanding of the complex effects of microbial diversity and rhizobia inoculation on crop yields of different peanut cultivars under organic versus conventional farming systems is extremely limited. In this research, we studied the impacts of conventional vs. organic cultivation practices and inoculation with commercial vs. single strain inoculum on peanut yield and soil microbial diversity of five peanut cultivars. The experiment was set up in the field following a split-split-plot design. Our results from the 16 S microbiome sequencing showed considerable variations of microbial composition between the cultivation types and inoculum, indicating a preferential association of microbes to peanut roots with various inoculum and cropping system. Alpha diversity indices (chao1, Shannon diversity, and Simpson index) of soil microbiome were generally higher in plots with organic than conventional inorganic practices. The cultivation type and inoculum explained significant differences among bacterial communities. Taxonomic classification revealed two phyla, TM6 and Firmicutes were significantly represented in inorganic as compared to organic soil, where significant phyla were Armatimonadetes, Gemmatimonadetes, Nitrospirae, Proteobacteria, Verrucomicrobia, and WS3. Yields in the organic cultivation system decreased by 10-93% of the yields in the inorganic cultivation system. Cultivar G06 and T511 consistently showed relative high yields in both organic and inorganic trials. Our results show significant two-way interactions between cultivation type and genotype for most of the trait data collected. Therefore, it is critical for farmers to choose varieties based on their cultivation practices. Our results showed that bacterial structure was more uniform in organic fields and microbial diversity in legumes was reduced in inorganic fields. This research provided guides for farmers and scientists to improve peanut yield while promoting microbial diversity and increasing sustainability.

4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362065

ABSTRACT

Fruit size is an important fruit quality trait that influences the production and commodity values of loquats (Eriobotrya japonica Lindl.). The Small Auxin Upregulated RNA (SAUR) gene family has proven to play a vital role in the fruit development of many plant species. However, it has not been comprehensively studied in a genome-wide manner in loquats, and its role in regulating fruit size remains unknown. In this study, we identified 95 EjSAUR genes in the loquat genome. Tandem duplication and segmental duplication contributed to the expansion of this gene family in loquats. Phylogenetic analysis grouped the SAURs from Arabidopsis, rice, and loquat into nine clusters. By analyzing the transcriptome profiles in different tissues and at different fruit developmental stages and comparing two sister lines with contrasting fruit sizes, as well as by functional predictions, a candidate gene (EjSAUR22) highly expressed in expanding fruits was selected for further functional investigation. A combination of Indoleacetic acid (IAA) treatment and virus-induced gene silencing revealed that EjSAUR22 was not only responsive to auxin, but also played a role in regulating cell size and fruit expansion. The findings from our study provide a solid foundation for understanding the molecular mechanisms controlling fruit size in loquats, and also provide potential targets for manipulation of fruit size to accelerate loquat breeding.


Subject(s)
Arabidopsis , Eriobotrya , Eriobotrya/genetics , Fruit/genetics , RNA , Phylogeny , Plant Breeding , Indoleacetic Acids , Arabidopsis/genetics , Gene Expression Regulation, Plant
5.
Plants (Basel) ; 10(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34451616

ABSTRACT

Crop domestication occurred ~10,000-12,000 years ago when humans shifted from a hunter-gatherer to an agrarian society. Crops were domesticated by selecting the traits in wild plant species that were suitable for human use. Research is crucial to elucidate the mechanisms and processes involved in modern crop improvement and breeding. Recent advances in genomics have revolutionized our understanding of crop domestication. In this review, we summarized cutting-edge crop domestication research by presenting its (1) methodologies, (2) current status, (3) applications, and (4) perspectives. Advanced genomics approaches have clarified crop domestication processes and mechanisms, and supported crop improvement.

6.
Front Genet ; 12: 667038, 2021.
Article in English | MEDLINE | ID: mdl-34220944

ABSTRACT

Cowpea (Vigna unguiculata [L.] Walp., diploid, 2n = 22) is a major crop used as a protein source for human consumption as well as a quality feed for livestock. It is drought and heat tolerant and has been bred to develop varieties that are resilient to changing climates. Plant adaptation to new climates and their yield are strongly affected by flowering time. Therefore, understanding the genetic basis of flowering time is critical to advance cowpea breeding. The aim of this study was to perform genome-wide association studies (GWAS) to identify marker trait associations for flowering time in cowpea using single nucleotide polymorphism (SNP) markers. A total of 368 accessions from a cowpea mini-core collection were evaluated in Ft. Collins, CO in 2019 and 2020, and 292 accessions were evaluated in Citra, FL in 2018. These accessions were genotyped using the Cowpea iSelect Consortium Array that contained 51,128 SNPs. GWAS revealed seven reliable SNPs for flowering time that explained 8-12% of the phenotypic variance. Candidate genes including FT, GI, CRY2, LSH3, UGT87A2, LIF2, and HTA9 that are associated with flowering time were identified for the significant SNP markers. Further efforts to validate these loci will help to understand their role in flowering time in cowpea, and it could facilitate the transfer of some of this knowledge to other closely related legume species.

7.
Front Genet ; 11: 222, 2020.
Article in English | MEDLINE | ID: mdl-32265983

ABSTRACT

Cultivated peanut (Arachis hypogaea L.) forms root nodules to enable a symbiotic relationship with rhizobia for biological nitrogen fixation. To understand the genetic factors of peanut nodulation, it is fundamental to genetically map and clone the genes involved in nodulation. For genetic mapping, high throughput genotyping with a large number of polymorphic markers is critical. In this study, two sets of sister recombinant inbred lines (RILs), each containing a nodulating (Nod+) and non-nodulating (Nod-) line, and their Nod+ parental lines were extensively genotyped. Several next generation sequencing (NGS) methods including target enrichment sequencing (TES), RNA-sequencing (RNA-seq), genotyping by sequencing (GBS), and the 48K Axiom Arachis2 SNP array, and various analysis pipelines were applied to identify single nucleotide polymorphisms (SNP) among the two sets of RILs and their parents. TES revealed the largest number of homozygous SNPs (15,947) between the original parental lines, followed by the Axiom Arachis2 SNP array (1,887), RNA-seq (1,633), and GBS (312). Among the five SNP analysis pipelines applied, the alignment to A/B genome followed by HAPLOSWEEP revealed the largest number of homozygous SNPs and highest concordance rate (79%) with the array. A total of 222 and 1,200 homozygous SNPs were polymorphic between the Nod+ and Nod- sister RILs and between their parents, respectively. A graphical genotype map of the sister RILs was constructed with these SNPs, which demonstrated the candidate genomic regions harboring genes controlling nodulation across the whole genome. Results of this study mainly provide the pros and cons of NGS and SNP genotyping platforms for genetic mapping in peanut, and also provide potential genetic resources to narrow down the genomic regions controlling peanut nodulation, which would lay the foundation for gene cloning and improvement of nitrogen fixation in peanut.

8.
Front Microbiol ; 11: 93, 2020.
Article in English | MEDLINE | ID: mdl-32117123

ABSTRACT

In many legumes, the colonization of roots by rhizobia is via "root hair entry" and its molecular mechanisms have been extensively studied. However, the nodulation of peanuts (Arachis hypogaea L.) by Bradyrhizobium strains requires an intercellular colonization process called "crack entry," which is understudied. To understand the intercellular crack entry process, it is critical to develop the tools and resources related to the rhizobium in addition to focus on investigating the mechanisms of the plant host. In this study, we isolated a Bradyrhizobium sp. strain, Lb8 from peanut root nodules and sequenced it using PacBio long reads. The complete genome sequence was a circular chromosome of 8,718,147 base-pair (bp) with an average GC content of 63.14%. No plasmid sequence was detected in the sequenced DNA sample. A total of 8,433 potential protein-encoding genes, one rRNA cluster, and 51 tRNA genes were annotated. Fifty-eight percent of the predicted genes showed similarity to genes of known functions and were classified into 27 subsystems representing various biological processes. The genome shared 92% of the gene families with B. diazoefficens USDA 110T. A presumptive symbiosis island of 778 Kb was detected, which included two clusters of nif and nod genes. A total of 711 putative protein-encoding genes were in this region, among which 455 genes have potential functions related to symbiotic nitrogen fixation and DNA transmission. Of 21 genes annotated as transposase, 16 were located in the symbiosis island. Lb8 possessed both Type III and Type IV protein secretion systems, and our work elucidated the association of flagellar Type III secretion systems in bradyrhizobia. These observations suggested that complex rearrangement, such as horizontal transfer and insertion of different DNA elements, might be responsible for the plasticity of the Bradyrhizobium genome.

9.
Methods Mol Biol ; 2107: 199-231, 2020.
Article in English | MEDLINE | ID: mdl-31893449

ABSTRACT

Target enrichment sequencing (TES) is a powerful approach to deep-sequencing the exome or genomic regions of interest with great depth. Although successfully and widely adopted in many plant species, TES is currently applied for genotyping of only a couple legume species. Here we describe an in-solution probe capture based method for application of TES in legumes. The topics cover probe design, library preparation, probe hybridization, as well as bioinformatic analysis for evaluation of target capture efficiency and identifying single nucleotide polymorphisms using generated sequencing data.


Subject(s)
Fabaceae/genetics , High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Probes/genetics , Polymorphism, Single Nucleotide , Computational Biology , Exome , Gene Expression Profiling/methods , Gene Library , Genotyping Techniques , Sequence Analysis, DNA/methods
10.
Plant Biotechnol J ; 17(2): 488-498, 2019 02.
Article in English | MEDLINE | ID: mdl-30051590

ABSTRACT

Sugarcane (Saccharum spp.) is a highly energy-efficient crop primarily for sugar and bio-ethanol production. Sugarcane genetics and cultivar improvement have been extremely challenging largely due to its complex genomes with high polyploidy levels. In this study, we deeply sequenced the coding regions of 307 sugarcane germplasm accessions. Nearly five million sequence variations were catalogued. The average of 98× sequence depth enabled different allele dosages of sequence variation to be differentiated in this polyploid collection. With selected high-quality genome-wide SNPs, we performed population genomic studies and environmental association analysis. Results illustrated that the ancient sugarcane hybrids, S. barberi and S. sinense, and modern sugarcane hybrids are significantly different in terms of genomic compositions, hybridization processes and their potential ancestry contributors. Linkage disequilibrium (LD) analysis showed a large extent of LD in sugarcane, with 962.4 Kbp, 2739.2 Kbp and 3573.6 Kbp for S. spontaneum, S. officinarum and modern S. hybrids respectively. Candidate selective sweep regions and genes were identified during domestication and historical selection processes of sugarcane in addition to genes associated with environmental variables at the original locations of the collection. This research provided an extensive amount of genomic resources for sugarcane community and the in-depth population genomic analyses shed light on the breeding and evolution history of sugarcane, a highly polyploid species.


Subject(s)
Genome, Plant/genetics , Genomics , Saccharum/genetics , Adaptation, Physiological , Alleles , Chimera , Genetic Variation , Linkage Disequilibrium , Polymorphism, Single Nucleotide/genetics , Polyploidy , Saccharum/physiology
11.
Sci Rep ; 8(1): 14419, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258215

ABSTRACT

Napiergrass (Cenchrus purpureus Schumach) is a tropical forage grass and a promising lignocellulosic biofuel feedstock due to its high biomass yield, persistence, and nutritive value. However, its utilization for breeding has lagged behind other crops due to limited genetic and genomic resources. In this study, next-generation sequencing was first used to survey the genome of napiergrass. Napiergrass sequences displayed high synteny to the pearl millet genome and showed expansions in the pearl millet genome along with genomic rearrangements between the two genomes. An average repeat content of 27.5% was observed in napiergrass including 5,339 simple sequence repeats (SSRs). Furthermore, to construct a high-density genetic map of napiergrass, genotyping-by-sequencing (GBS) was employed in a bi-parental population of 185 F1 hybrids. A total of 512 million high quality reads were generated and 287,093 SNPs were called by using multiple de-novo and reference-based SNP callers. Single dose SNPs were used to construct the first high-density linkage map that resulted in 1,913 SNPs mapped to 14 linkage groups, spanning a length of 1,410 cM and a density of 1 marker per 0.73 cM. This map can be used for many further genetic and genomic studies in napiergrass and related species.


Subject(s)
Cenchrus/genetics , Genome, Plant , Chromosome Mapping , Genetic Linkage , High-Throughput Nucleotide Sequencing , Pennisetum/genetics , Plant Breeding , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Synteny
12.
Nat Biotechnol ; 35(10): 969-976, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28922347

ABSTRACT

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


Subject(s)
Agriculture , Desert Climate , Genome, Plant , Pennisetum/genetics , Quantitative Trait, Heritable , Base Sequence , Conserved Sequence , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Hybridization, Genetic , Molecular Sequence Annotation
13.
BMC Genomics ; 18(1): 594, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28793856

ABSTRACT

BACKGROUND: Sugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes. RESULTS: To use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA. CONCLUSIONS: The GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related species. A large number of sequence variations were discovered in the Saccharum complex, including SNPs, InDels, PAVs, and CNVs. Genome-wide SNPs were further used to illustrate sequence features of polyploid species and demonstrated the divergence of different species in the Saccharum complex. The results of this study showed that GBS was an effective NGS-based method to discover genomic sequence variations in highly polyploid and heterozygous species.


Subject(s)
Data Mining , Databases, Genetic , Genetic Variation , Polyploidy , Saccharum/genetics , Genotyping Techniques , Heterozygote , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide
14.
Mol Genet Genomics ; 292(5): 955-965, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28492983

ABSTRACT

Enabled by the next generation sequencing, target enrichment sequencing (TES) is a powerful method to enrich genomic regions of interest and to identify sequence variations. The objective of this study was to explore the feasibility of probe design from transcript sequences for TES application in calling sequence variants in peanut, an important allotetraploid crop with a large genome size. In this study, we applied an in-solution hybridization method to enrich DNA sequences of seven peanut genotypes. Our results showed that it is feasible to apply TES with probes designed from transcript sequences in polyploid peanut. Using a set of 31,123 probes, a total of 5131 and 7521 genes were targeted in peanut A and B genomes, respectively. For each genotype used in this study, the probe target capture regions were efficiently covered with high depth. The average on-target rate of sequencing reads was 42.47%, with a significant amount of off-target reads coming from genomic regions homologous to target regions. In this study, when given predefined genomic regions of interest and the same amount of sequencing data, TES provided the highest coverage of target regions when compared to whole genome sequencing, RNA sequencing, and genotyping by sequencing. Single nucleotide polymorphism (SNP) calling and subsequent validation revealed a high validation rate (85.71%) of homozygous SNPs, providing valuable markers for peanut genotyping. This study demonstrated the success of applying TES for SNP identification in peanut, which shall provide valuable suggestions for TES application in other non-model species without a genome reference available.


Subject(s)
Arachis/genetics , Chromosome Mapping/methods , DNA Probes/genetics , Genome, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Expressed Sequence Tags , Genotype , Genotyping Techniques , Polymorphism, Single Nucleotide/genetics
15.
Int J Genomics ; 2017: 8614160, 2017.
Article in English | MEDLINE | ID: mdl-28154822

ABSTRACT

Jatropha (Jatropha curcas L.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies.

16.
Sci Rep ; 7: 40066, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059169

ABSTRACT

The molecular mechanisms of symbiosis in cultivated peanut with a 'crack entry' infection process are largely understudied. In this study, we investigated the root transcriptional profiles of two pairs of non-nodulating (nod-) and nodulating (nod+) sister inbred peanut lines, E4/E5 and E7/E6, and their nod+ parents, F487A and PI262090 during rhizobial infection and nodule initiation by using RNA-seq technology. A total of 143, 101, 123, 215, 182, and 289 differentially expressed genes (DEGs) were identified in nod- E4, E7 and nod+ E5, E6, F487A, and PI262090 after inoculation with Bradyrhizobium sp. Different deficiencies at upstream of symbiotic signaling pathway were revealed in the two nod- genotypes. DEGs specific in nod+ genotypes included orthologs to some known symbiotic signaling pathway genes, such as NFR5, NSP2, NIN, ERN1, and many other novel and/or functionally unknown genes. Gene ontology (GO) enrichment analysis of nod+ specific DEGs revealed 54 significantly enriched GO terms, including oxidation-reduction process, metabolic process, and catalytic activity. Genes related with plant defense systems, hormone biosynthesis and response were particularly enriched. To our knowledge, this is the first report revealing symbiosis-related genes in a genome-wide manner in peanut representative of the 'crack entry' species.


Subject(s)
Arachis/growth & development , Arachis/genetics , Bradyrhizobium/growth & development , Gene Expression Regulation, Plant , Plant Root Nodulation , Transcriptome , Arachis/microbiology , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...