Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 91: 137-145, 2019 12.
Article in English | MEDLINE | ID: mdl-31533026

ABSTRACT

The aim of this study was to evaluate the effects of two nanofibrillated cellulose (NFC) hydrogels on two human derivatives during freeze-drying. Native NFC hydrogel is a suitable platform to culture 3D cell spheroids and a hydrogel processed further, called anionic NFC (ANFC) hydrogel, is an excellent platform for controlled release of proteins. Moreover, it has been shown to be compatible with freeze-drying when correct lyoprotectants are implemented. Freeze-drying is a method, where substance is first frozen, and then vacuum dried trough sublimation of water in order to achieve dry matter without the loss of the original three-dimensional structures. The first chosen human derivative was adipose tissue extract (ATE) which is a cell-free growth factor-rich preparation capable of promoting growth of regenerative cells. The release of growth factors from the freeze-dried mixture of ATE and ANFC was compared to that of non-freeze-dried control mixtures. The release profiles remained at the same level after freeze-drying. The second derivative was hepatocellular carcinoma (HepG2) cell spheroids which were evaluated before and after freeze-drying. The 3D structure of the HepG2 cell spheroids was preserved and the spheroids retained 18% of their metabolic activity after rehydration. However, the freeze-dried and rehydrated HepG2 cell spheroids did not proliferate and the cell membrane was damaged by fusion and formation of crystals.


Subject(s)
Adipose Tissue/chemistry , Cellulose/pharmacology , Cryopreservation/methods , Hydrogels/pharmacology , Spheroids, Cellular/cytology , Tissue Extracts/pharmacology , Carcinoma, Hepatocellular , Cell Membrane/pathology , Freeze Drying , Hep G2 Cells , Humans , Hydrogels/chemistry , Liver Neoplasms , Nanofibers/chemistry , Tumor Cells, Cultured , Water/chemistry
2.
Int J Pharm ; 548(1): 113-119, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29920312

ABSTRACT

Drug release from a new type of matrix material consisting of partially fibrillated microcrystalline cellulose was investigated. A mechanical treatment of novel AaltoCell™ cellulose microcrystals caused partial opening of the nanofibrillary structure of the cellulose particles and entanglement of individual particles led into formation of an elastic network of microcrystalline cellulose. The rheological properties of the stable hydrogel-like materials were characterised by shear rheometry. Model compounds metronidazole and lysozyme were successfully employed in drug release experiments carried out by delignified (bleached) and lignin-containing matrices. The viscosity as well as the lignin-content played a role in the release dynamics of the drugs. Microcrystalline AaltoCell™ was proven as high-performing material for diffusion controlled release of the chosen model compounds and can be seen as a safe and economical alternative for novel matrix materials such as nanocellulose or cellulose derivatives.


Subject(s)
Cellulose/chemistry , Colloids , Delayed-Action Preparations/chemistry , Drug Liberation , Metronidazole/chemistry , Muramidase/chemistry , Rheology , Viscosity
3.
Pharm Res ; 35(7): 145, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29790010

ABSTRACT

PURPOSE: Bioadhesion is an important property of biological membranes, that can be utilized in pharmaceutical and biomedical applications. In this study, we have fabricated mucoadhesive drug releasing films with bio-based, non-toxic and biodegradable polymers that do not require chemical modifications. METHODS: Nanofibrillar cellulose and anionic type nanofibrillar cellulose were used as film forming materials with known mucoadhesive components mucin, pectin and chitosan as functional bioadhesion enhancers. Different polymer combinations were investigated to study the adhesiveness, solid state characteristics, film morphology, swelling, mechanical properties, drug release with the model compound metronidazole and in vitro cytotoxicity using TR146 cells to model buccal epithelium. RESULTS: SEM revealed lamellar structures within the films, which had a thickness ranging 40-240 µm depending on the film polymer composition. All bioadhesive components were non-toxic and showed high adhesiveness. Rapid drug release was observed, as 60-80% of the total amount of metronidazole was released in 30 min depending on the film formulation. CONCLUSIONS: The liquid molding used was a straightforward and simple method to produce drug releasing highly mucoadhesive films, which could be utilized in treating local oral diseases, such as periodontitis. All materials used were natural biodegradable polymers from renewable sources, which are generally regarded as safe.


Subject(s)
Adhesives/metabolism , Cellulose/metabolism , Drug Carriers/metabolism , Mucins/metabolism , Nanofibers , Pectins/metabolism , Adhesives/administration & dosage , Adhesives/chemistry , Animals , CHO Cells , Cattle , Cell Survival/drug effects , Cell Survival/physiology , Cellulose/administration & dosage , Cellulose/chemistry , Cricetinae , Cricetulus , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Humans , Mucins/administration & dosage , Mucins/chemistry , Nanofibers/administration & dosage , Nanofibers/chemistry , Pectins/administration & dosage , Pectins/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Tensile Strength
4.
Int J Pharm ; 532(1): 269-280, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28888974

ABSTRACT

Concentrated 3% and 6.5% anionic nanofibrillar cellulose (ANFC) hydrogels were introduced as matrix reservoirs for controlled delivery applications of small molecules and proteins. A further aim was to study how the freeze-drying and subsequent rehydration of ANFC hydrogel affects the rheological properties and drug release of selected model compounds from the reconstructed hydrogels. It was demonstrated that the 3% and 6.5% ANFC hydrogels can be freeze-dried with suitable excipients into highly porous aerogel structures and redispersed back into the hydrogel form without significant change in the rheological properties. Freeze-drying did not affect the drug release properties from redispersed ANFC hydrogels, indicating that these systems could be stored in the dry form and only redispersed when needed. For large molecules, the diffusion coefficients were significantly smaller when higher ANFC fiber content was used, indicating that the amount of ANFC fibers in the hydrogel can be used to control the release rate. The release of small molecules was controlled with the ANFC fiber content only to a moderate extent. The results indicate that ANFC hydrogel can be used for controlled delivery of several types of molecules and that the hydrogel can be successfully freeze-dried and redispersed.


Subject(s)
Cellulose/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Delayed-Action Preparations/chemistry , Dextrans/chemistry , Drug Liberation , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/chemistry , Freeze Drying , Ketoprofen/chemistry , Metronidazole/chemistry , Microscopy, Electron, Scanning , Muramidase/chemistry , Nadolol/chemistry , Nanofibers/ultrastructure , Rheology , Serum Albumin, Bovine/chemistry
5.
Eur J Pharm Sci ; 100: 238-248, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28126561

ABSTRACT

The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations.


Subject(s)
Cellulose/chemistry , Fungal Proteins/chemistry , Ibuprofen/chemistry , Nanofibers/chemistry , Naproxen/chemistry , Delayed-Action Preparations/chemistry , Drug Liberation , Emulsions , Oleic Acids/chemistry , Soybean Oil/chemistry , Trichoderma , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...