Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Heliyon ; 10(4): e25945, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384567

ABSTRACT

COVID-19 is a significant public health problem around the globe, including in Australia. Despite this, Australia's Ministry of Health has expanded COVID-19 control measures widely, logistical trials exist, and the disease burden still needs more clarity. One of the best methods to comprehend the dynamics of disease transmission is by mathematical modeling of COVID-19, which also makes it possible to quantify factors in many places, including Australia. In order to understand the dynamics of COVID-19 in Australia, we examine a mathematical modeling framework for the virus in this study. Australian COVID-19 actual incidence data from January to December 2021 was used to calibrate the model. We also performed a sensitivity analysis of the model parameters and found that the COVID-19 transmission rate was the primary factor in determining the basic reproduction number (R0). Gradually influential intervention policies were established, with accurate effect and coverage regulated with the help of COVID-19 experts in Australia. We simulated data for the period from April 2022 to August 2023. To ascertain which of these outcomes is most effective in lowering the COVID-19 burden, we here assessed the COVID-19 burden (as shown by the number of incident cases and mortality) under a range of intervention scenarios. Regarding the policy of single intervention, the fastest and most efficient way to lower the incidence of COVID-19 is via increasing the first-dose immunization rate, while an improved treatment rate for the afflicted population is also helps to lower mortality in Australia. Furthermore, our results imply that integrating more therapies at the same time increases their efficacy, particularly for mortality, which significantly reduced with a moderate effort, while lowering the number of COVID-19 instances necessitates a major and ongoing commitment.

2.
Sci Rep ; 14(1): 494, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177230

ABSTRACT

COVID-19 is an infectious disease that causes millions of deaths worldwide, and it is the principal leading cause of morbidity and mortality in all nations. Although the governments of developed and developing countries are enforcing their universal control strategies, more precise and cost-effective single or combination interventions are required to control COVID-19 outbreaks. Using proper optimal control strategies with appropriate cost-effectiveness analysis is important to simulate, examine, and forecast the COVID-19 transmission phase. In this study, we developed a COVID-19 mathematical model and considered two important features including direct link between vaccination and latently population, and practical healthcare cost by separation of infections into Mild and Critical cases. We derived basic reproduction numbers and performed mesh and contour plots to explore the impact of different parameters on COVID-19 dynamics. Our model fitted and calibrated with number of cases of the COVID-19 data in Bangladesh as a case study to determine the optimal combinations of interventions for particular scenarios. We evaluated the cost-effectiveness of varying single and combinations of three intervention strategies, including transmission control, treatment, and vaccination, all within the optimal control framework of the single-intervention policies; enhanced transmission control is the most cost-effective and prompt in declining the COVID-19 cases in Bangladesh. Our finding recommends that a three-intervention strategy that integrates transmission control, treatment, and vaccination is the most cost-effective compared to single and double intervention techniques and potentially reduce the overall infections. Other policies can be implemented to control COVID-19 depending on the accessibility of funds and policymakers' judgments.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Cost-Effectiveness Analysis , Disease Outbreaks/prevention & control , Models, Theoretical , Basic Reproduction Number
3.
Results Phys ; 35: 105392, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35281327

ABSTRACT

COVID-19 is an infectious disease that kills millions of people each year and it is a major public health problem around the globe. The current COVID-19 situation is still now concerning, though the vaccination program is running. In this study, we considered a COVID-19 model with a double-dose vaccination strategy to control the current outbreak situation in Bangladesh. The fundamental qualitative analysis of this mathematical model has been performed. The conditions of positive invariance, boundedness with suitable initial conditions were analyzed. We have estimated the basic reproduction number ( R 0 ) for disease transmission and determined that our model contains two equilibrium points: the disease-free equilibrium and a disease-endemic equilibrium. We used the Routh-Hurwitz criteria to determine the stability of the equilibria. The disease will be eradicated from the community if R 0  < 1, otherwise the disease persists in the population. To support the qualitative analysis of our model, we performed numerical simulations using MATLAB routine and estimated model parameters. Sensitivity analysis is used to explore the association for Mild and Critical cases concerning the corresponding model parameters. We observed that the most significant parameter to spread the virus is the transmission rate. The numerical simulations showed that a full dose vaccination program significantly reduces the mild and critical cases and has potential impact to eradicate the virus from the community. The information that we generated from our analysis may help the public health professionals to impose the best strategy effectively to control the outbreak situation of the virus in Bangladesh.

SELECTION OF CITATIONS
SEARCH DETAIL
...