Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 356: 120710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547822

ABSTRACT

In tropical regions, shifting from forests and traditional agroforestry to intensive plantations generates conflicts between human welfare (farmers' demands and societal needs) and environmental protection. Achieving sustainability in this transformation will inevitably involve trade-offs between multiple ecological and socioeconomic functions. To address these trade-offs, our study used a new methodological approach allowing the identification of transformation scenarios, including theoretical landscape compositions that satisfy multiple ecological functions (i.e., structural complexity, microclimatic conditions, organic carbon in plant biomass, soil organic carbon and nutrient leaching losses), and farmers needs (i.e., labor and input requirements, total income to land, and return to land and labor) while accounting for the uncertain provision of these functions and having an actual potential for adoption by farmers. We combined a robust, multi-objective optimization approach with an iterative search algorithm allowing the identification of ecological and socioeconomic functions that best explain current land-use decisions. The model then optimized the theoretical land-use composition that satisfied multiple ecological and socioeconomic functions. Between these ends, we simulated transformation scenarios reflecting the transition from current land-use composition towards a normative multifunctional optimum. These transformation scenarios involve increasing the number of optimized socioeconomic or ecological functions, leading to higher functional richness (i.e., number of functions). We applied this method to smallholder farms in the Jambi Province, Indonesia, where traditional rubber agroforestry, rubber plantations, and oil palm plantations are the main land-use systems. Given the currently practiced land-use systems, our study revealed short-term returns to land as the principal factor in explaining current land-use decisions. Fostering an alternative composition that satisfies additional socioeconomic functions would require minor changes ("low-hanging fruits"). However, satisfying even a single ecological indicator (e.g., reduction of nutrient leaching losses) would demand substantial changes in the current land-use composition ("moonshot"). This would inevitably lead to a profit decline, underscoring the need for incentives if the societal goal is to establish multifunctional agricultural landscapes. With many oil palm plantations nearing the end of their production cycles in the Jambi province, there is a unique window of opportunity to transform agricultural landscapes.


Subject(s)
Carbon , Soil , Humans , Soil/chemistry , Carbon/analysis , Rubber , Indonesia , Forests , Agriculture , Conservation of Natural Resources
2.
Sci Rep ; 14(1): 2140, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272940

ABSTRACT

Forests and their provision of ecosystem services are endangered by climate change. Tree-species diversification has been identified as a key adaptation strategy to balance economic risks and returns in forest stands. Yet, whether this synergy between ecology and economics persists under large-scale extreme weather events remains unanswered. Our model accounts for both, small-scale disturbances in individual stands and extreme weather events that cause spatio-temporally correlated disturbances in a large number of neighboring stands. It economically optimizes stand-type allocations in a large forest enterprise with multiple planning units. Novel components are: spatially explicit site heterogeneity and a comparison of economic diversification strategies under local and regionally coordinated planning by simplified measures for [Formula: see text], [Formula: see text], and [Formula: see text]-diversity of stand types. [Formula: see text]-diversity refers to the number and evenness of stand types in local planning units, [Formula: see text]-diversity to the dissimilarity of the species composition across planning units, and [Formula: see text]-diversity to the number and evenness of stand types in the entire enterprise. Local planning led to stand-type diversification within planning units ([Formula: see text]-diversity), while regionally coordinated planning led to diversification across planning units ([Formula: see text]-diversity). We observed a trend towards homogenization of stand-type composition likely selected under economic objectives with increasing extreme weather events. No diversification strategy fully buffered the adverse economic consequences. This led to fatalistic decisions, i.e., selecting stand types with low investment risks but also low resistance to disturbances. The resulting forest structures indicate potential adverse consequences for other ecosystem services. We conclude that high tree-species diversity may not necessarily buffer economic consequences of extreme weather events. Forest policies reducing forest owners' investment risks are needed to establish stable forests that provide multiple ecosystem services.

3.
Environ Resour Econ (Dordr) ; 84(2): 343-381, 2023.
Article in English | MEDLINE | ID: mdl-36712582

ABSTRACT

Given the drastic changes in the environment, resilience is a key focus of ecosystem management. Yet, the quantification of the different dimensions of resilience remains challenging, particularly for long-lived systems such as forests. Here we present an analytical framework to study the economic resilience of different forest management systems, focusing on the rate of economic recovery after severe disturbance. Our framework quantifies the post-disturbance gain in the present value of a forest relative to a benchmark system as an indicator of economic resilience. Forest values and silvicultural interventions were determined endogenously from an optimization model and account for risks affecting tree survival. We consider the effects of differences in forest structure and tree growth post disturbance on economic resilience. We demonstrate our approach by comparing the economic resilience of continuous cover forestry against a clear fell system for typical conditions in Central Europe. Continuous cover forestry had both higher economic return and higher economic resilience than the clear fell system. The economic recovery from disturbance in the continuous cover system was between 18.2 and 51.5% faster than in the clear fell system, resulting in present value gains of between 1733 and 4535 € ha-1. The advantage of the continuous cover system increased with discount rate and stand age, and was driven by differences in both stand structure and economic return. We conclude that continuous cover systems can help to address the economic impacts of increasing disturbances in forest management.

4.
Plants (Basel) ; 11(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36297787

ABSTRACT

Even though the site index is a popular method for describing forest productivity, its use is limited in uneven-aged multispecies forests. Accordingly, the site form (SF) is an alternative measure of productivity to the site index based on the tree height-diameter relationship. Our study aims to evaluate SF as a measure of productivity in the temperate uneven-aged multispecies forests of Durango, Mexico, applying three methods to estimate SF: (i) as the mean height of dominant trees at a reference diameter (SFH-D); (ii) as the expected mean height of dominant trees at a reference mean diameter (SFMH-MD), and (iii) as the expected height at a reference diameter for a given site (SFh-dbh). We assess the effectiveness of the SF based on two hypotheses: (i) the SF correlates to the total volume production, and (ii) the SF is independent of stand density. The SFH-D and the SFh-dbh showed a high correlation with productivity. However, they also did so with density. Contrary to this, the SFMH-MD had a weak correlation with density and productivity. We conclude that the SF is a suitable approach to describe site quality. Nonetheless, its effectiveness as a site quality indicator may be affected according to the method used.

5.
Environ Manage ; 67(6): 1119-1136, 2021 06.
Article in English | MEDLINE | ID: mdl-33580335

ABSTRACT

Models are essential to assess the socio-economic credentials of new agroforestry systems. In this study, we showcase robust optimisation as a tool to evaluate agroforestry's potential to meet farmers' multiple goals. Our modelling approach has three parts. First, we use a discrete land-use model to evaluate two agroforestry systems (alley cropping and silvopasture) and conventional land uses against five socio-economic objectives, focusing on the forest frontier in eastern Panama. Next, we couple the land-use model with robust optimisation, to determine the mix of land uses (farm portfolio) that minimises trade-offs between the five objectives. Here we consider uncertainty to simulate the land-use decisions of a risk-averse farmer. Finally, we assess how the type and amount of agroforestry included in the optimal land-use portfolio changes under different environmental, socio-economic and political scenarios, to explore the conditions that may make agroforestry more attractive for farmers. We identify silvopasture as a promising land use for meeting farmers' goals, especially for farms with less productive soils. The additional labour demand compared to conventional pasture, however, may prove an important barrier to adoption for farms facing acute labour shortages. The selection of agroforestry responded strongly to changes in investment costs and timber prices, suggesting that cost-sharing arrangements and tax incentives could be effective strategies to enhance adoption. We found alley cropping to be less compatible with farmers' risk aversion, but this agroforestry system may still be a desirable complement to the land-use portfolio, especially for farmers who are more profit-oriented and tolerant of risk.


Subject(s)
Agriculture , Forests , Farmers , Humans , Soil
6.
J Environ Manage ; 261: 110248, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32148314

ABSTRACT

Agroforestry is hypothesised to increase ecological and economic functions of farms. Yet it is unclear if and how much agroforestry should be embedded in diversified farming systems to satisfy farmers' needs while potentially enhancing environmental services. To address this research gap we use a mathematical programming model to investigate the role of different agroforestry systems in hypothetical farm portfolios that reduce trade-offs between farmers' goals. Our approach is innovative because it simultaneously considers multiple objectives and the effect of land-use diversification within a farm, is based on knowledge and perceptions of local farmers, and accounts for heterogeneity in farmer judgement. We test the model in a forest frontier region in Eastern Panama, using data from farmer interviews. Farmers evaluated conventional land uses and two agroforestry systems (silvopasture and alley cropping) against 10 pre-defined socio-economic and ecological objectives. First we determined the optimal farm land-use composition that reduces trade-offs between the 10 objectives. The model selects the mix of land uses that secures the best worst-case performance across all objectives, when considering uncertainty in the ability of each land use to achieve each objective (which we quantify by the variability in farmer opinion). Agroforestry dominates the optimised farm portfolio, which comprises 60% silvopasture, 39% forest and 1% plantation. This land-use portfolio, however, deviates strongly from the current land use of farmers, which is 59% pasture, 26% crops, 14% forest and 1% plantation. In a second step we explore the implicit objectives driving farmers' current land-use decisions. We find that immediate-term needs related to food security and liquidity best explain farmers' current land-use portfolio; optimising for these objectives produces a land-use portfolio comprising 60% pasture and 40% crops, which is similar to the current land use. This suggests that increasing agroforestry adoption in the study area will require systems that provide early and frequent returns and allow for ongoing crop production, to better satisfy farmers' cash flow and household consumption needs.


Subject(s)
Agriculture , Goals , Crops, Agricultural , Farmers , Humans , Panama
7.
Sci Adv ; 6(5): eaax7712, 2020 01.
Article in English | MEDLINE | ID: mdl-32064338

ABSTRACT

Biodiversity's contribution to human welfare has become a key argument for maintaining and enhancing biodiversity in managed ecosystems. The functional relationship between biodiversity (b) and economic value (V) is, however, insufficiently understood, despite the premise of a positive-concave bV relationship that dominates scientific and political arenas. Here, we review how individual links between biodiversity, ecosystem functions (F), and services affect resulting bV relationships. Our findings show that bV relationships are more variable, also taking negative-concave/convex or strictly concave and convex forms. This functional form is driven not only by the underlying bF relationship but also by the number and type of ecosystem services and their potential trade-offs considered, the effects of inputs, and the type of utility function used to represent human preferences. Explicitly accounting for these aspects will enhance the substance and coverage of future valuation studies and allow more nuanced conclusions, particularly for managed ecosystems.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Humans
8.
Glob Chang Biol ; 26(4): 2403-2420, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31957121

ABSTRACT

Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decision-making. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision-makers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975-2015) in the projected land-use allocation (2015-2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%-80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.

9.
J Environ Manage ; 231: 926-939, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30602254

ABSTRACT

Modern Portfolio Theory is a well-established method in economic research for considering the risks and returns in asset allocations and the potential benefits of diversification for risk averse agents. Thus, it is a useful tool for guiding sustainability discourse under uncertain future states. Existing discussions around the method's use in environmental research have evolved during over the 75 years of its application, leading to a continued renewal of perspectives on utilising it. We classify the environmental questions where portfolio theory has been applied, and critically discuss the methodological approaches taken; providing a stepping stone for future use of the method. This article provides a framework for its application in environmental research using the following questions: 1) what is the type of research or management question and objective(s) of the decision-maker(s); 2) what are the definitions of the assets to be included in the portfolio; 3) what are the ways that returns are valued, discounted, distributed and weighted; 4) what is the most appropriate way for risks to be accounted for and managed, including the selection of the appropriate model and taking into account risk preferences; and 5) what are the definitions of constraints in the programming problem.


Subject(s)
Models, Theoretical , Uncertainty
10.
Sci Total Environ ; 587-588: 22-35, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28189309

ABSTRACT

Increasing land-use conflicts call for the development of land-use systems that reconcile agricultural production with the provisioning of multiple ecosystem services, including climate change mitigation. Agroforestry has been suggested as a global solution to increase land-use efficiency, while reducing environmental impacts and economic risks for farmers. Past research has often focused on comparing tree-crop combinations with agricultural monocultures, but agroforestry has seldom been systematically compared to other forms of land-use diversification, including a farm mosaic. This form of diversification mixes separate parcels of different land uses within the farm. The objective of this study was to develop a modelling approach to compare the performance of the agroforestry and farm mosaic diversification strategies, accounting for tree-crop interaction effects and economic and climate uncertainty. For this purpose, Modern Portfolio Theory and risk simulation were coupled with the process-based biophysical simulation model WaNuLCAS 4.0. For an example application, we used data from a field trial in Panama. The results show that the simulated agroforestry systems (Taungya, alley cropping and border planting) could outperform a farm mosaic approach in terms of cumulative production and return. Considering market and climate uncertainty, agroforestry showed an up to 21% higher economic return at the same risk level (i.e. standard deviation of economic returns). Farm compositions with large shares of land allocated to maize cultivation were also more severely affected by an increasing drought frequency in terms of both risks and returns. Our study demonstrates that agroforestry can be an economically efficient diversification strategy, but only if the design allows for economies of scope, beneficial interactions between trees and crops and higher income diversification compared to a farm mosaic. The modelling approach can make an important contribution to support land-use decisions at the farm level and reduce land-use conflicts at the landscape level.

11.
Science ; 354(6319): 1541, 2016 12 23.
Article in English | MEDLINE | ID: mdl-28008034
12.
Nat Commun ; 7: 11877, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27292766

ABSTRACT

High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services.

SELECTION OF CITATIONS
SEARCH DETAIL
...