Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 39(12): 349, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37857876

ABSTRACT

Several Pleurotus species (oyster mushrooms) are commercially cultivated in India owing to the favorable tropical agro-climatic conditions. However, there are only a few studies on the microbiome of mushrooms, especially oyster mushrooms. The aim of this study was to assess the effect of endobacteria on mycelial growth, spawning, sporophore development, and proximate composition of P. pulmonarius. We isolated several bacterial strains from the sporophores of P. pulmonarius and assessed the in vitro production of indole acetic acid, ammonia, and siderophores. The selected bacteria were individually supplemented with spawn, substrate, or both for sporophore production. Three of 130 isolates were selected as mycelial growth-promoting bacteria in both solid and submerged fermentation. These bacterial isolates were identified through Gram staining, biochemical characterization, and 16S rRNA sequencing. Isolate PP showed 99.24% similarity with Priestia paraflexa, whereas isolates PJ1 and PJ2 showed 99.78% and 99.65% similarities, respectively, with Rossellomorea marisflavi. The bacterial supplementation with spawn, substrate, or both, increased the biological efficiency (BE) and nutrient content of the mushrooms. The bacterial supplementation with substrate augmented BE by 64.84%, 13.73%, and 27.13% using PJ2, PP, and PJ1, respectively; under similar conditions of spawn supplementation, BE was increased by 15.24%, 47.30%, 48.10%, respectively. Overall, the supplementation of endobacteria to improve oyster mushroom cultivation may open a new avenue for sustainable agricultural practices in the mushroom industry.


Subject(s)
Agaricales , Pleurotus , Pleurotus/genetics , RNA, Ribosomal, 16S/genetics , Agaricales/genetics , Agriculture
2.
Curr Microbiol ; 79(4): 106, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35157142

ABSTRACT

Disha A (Bacillus cereus) and Disha B (Bacillus safensis) were isolated from pesticide-infested agricultural field and showed tolerance against pesticides, heavy metals, and antibiotics. The isolates exhibited PGPR activities in vitro as well as in field conditions in lentil (Lens culinaris) and cow pea (Vigna unguiculata). Both the Bacillus species could not be grown in mineral salt medium but efficiently grown in the media supplemented with pesticide (imidacloprid/carbendazim) demonstrating the utilization of pesticide as carbon/nitrogen source. The HPLC studies exhibited the pesticide (imidacloprid/carbendazim) degradation by both the bacteria. B. safensis showed better degradation of carbendazim (88.93%) and imidacloprid (82.48%) than that of B. cereus 78.07% and 49.12%, respectively. The bacterial isolates showed high concentration of heavy metal tolerance viz. lead, molybdenum, cadmium, copper, cobalt, and zinc, except mercury. Both the bacteria possessed single plasmid. The plasmid-cured isolates of B. cereus did not tolerate any pesticide, whereas that of B. safensis tolerated all the pesticides, like wild strains. The plasmid curing experiments did not affect the heavy metal tolerance ability of both the bacteria indicating the genomic nature of heavy metal tolerance genes, whereas pesticide resistance genes are plasmid-dependent in B. cereus but genomic in B. safensis.


Subject(s)
Bacillus , Pesticides , Bacillus/genetics , Bacillus cereus/genetics , Plasmids/genetics , Soil Microbiology
3.
IEEE Trans Biomed Eng ; 54(6 Pt 2): 1161-6, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17549909

ABSTRACT

Current thinking attributes information processing for neuromuscular control exclusively to the nervous system. Our cadaveric experiments and computer simulations show, however, that the tendon network of the fingers performs logic computation to preferentially change torque production capabilities. How this tendon network propagates tension to enable manipulation has been debated since the time of Vesalius and DaVinci and remains an unanswered question. We systematically changed the proportion of tension to the tendons of the extensor digitorum versus the two dorsal interosseous muscles of two cadaver fingers and measured the tension delivered to the proximal and distal interphalangeal joints. We find that the distribution of input tensions in the tendon network itself regulates how tensions propagate to the finger joints, acting like the switching function of a logic gate that nonlinearly enables different torque production capabilities. Computer modeling reveals that the deformable structure of the tendon networks is responsible for this phenomenon; and that this switching behavior is an effective evolutionary solution permitting a rich repertoire of finger joint actuation not possible with simpler tendon paths. We conclude that the structural complexity of this tendon network, traditionally oversimplified or ignored, may in fact be critical to understanding brain-body coevolution and neuromuscular control. Moreover, this form of information processing at the macroscopic scale is a new instance of the emerging principle of nonneural "somatic logic" found to perform logic computation such as in cellular networks.


Subject(s)
Finger Joint/anatomy & histology , Finger Joint/physiology , Fingers/physiology , Models, Biological , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Tendons/physiology , Cadaver , Computational Biology/methods , Computer Simulation , Humans , In Vitro Techniques , Models, Anatomic , Stress, Mechanical , Torque
4.
Biol Cybern ; 93(3): 153-70, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16133587

ABSTRACT

This paper describes a neuro-musculo-skeletal model of the human lower body which has been developed with the aim of studying the effects of spinal cord injury on locomotor abilities. The model represents spinal neural control modules corresponding to central pattern generators, muscle spindle based reflex pathways, golgi tendon organ based pathways and cutaneous reflex pathways, which are coupled to the lower body musculo-skeletal dynamics. As compared to other neuro-musculo-skeletal models which aim to provide a description of the possible mechanisms involved in the production of locomotion, the goal of the model here is to understand the role of the known spinal pathways in locomotion. Thus, while other models focus primarily on functionality at the overall system level, the model here emphasizes functional and topological correspondance with the biological system at the level of the subcomponents representing spinal pathways. Such a model is more suitable for the detailed investigation of clinical questions related to spinal control of locomotion. The model is used here to perform preliminary experiments addressing the following issues: (1) the significance of spinal reflex modalities for walking and (2) the relative criticality of the various reflex modalities. The results of these experiments shed new light on the possible role of the reflex modalities in the regulation of stance and walking speed. The results also demonstrate the use of the model for the generation of hypothesis which could guide clinical experimentation. In the future, such a model may have applications in clinical diagnosis, as it can be used to identify the internal state of the system which provides the closest behavioral fit to a patient's pathological condition.


Subject(s)
Locomotion/physiology , Models, Neurological , Muscle, Skeletal/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord/physiology , Computer Simulation , Humans , Mechanoreceptors , Models, Biological , Motor Neurons/physiology , Muscle Spindles/physiology , Muscle, Skeletal/innervation , Proprioception , Reflex , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...