Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hum Reprod Sci ; 17(2): 102-111, 2024.
Article in English | MEDLINE | ID: mdl-39091438

ABSTRACT

Background: Male sterility results from high testicular temperatures, which affect mammalian spermatogenesis. High testicular temperatures affect sperm motility, morphology and fertility according to their magnitude and duration. Aim: The aim of the current study is to examine the effects of heat-induced oxidative stress and cinnamaldehyde on Wistar rat testicular structure and function. Settings and Design: The rats used in this experiment were Wistar albino rats. Materials and Methods: This research has six animals per group. Male Wistar albino rats of 2.5-3 months old and 275-300 g. (I) control, (II) heat stress (HS) in a closed chamber at 41°C for 14 days and (III) HS with cinnamaldehyde (CA) 50 mg/kg body weight for 14 days. (IV) CA alone. After the study, the animals were euthanised, and test samples were taken for sperm count, morphology, haematoxylin and eosin stain for normal cellular morphology, antioxidants and DNA integrity assessments. Statistical Analysis Used: The data were analysed statistically using one- and two-way ANOVA tests for comparisons between groups. Results: The stress group had significantly lower sperm counts and poor sperm morphology. The stress group's antioxidant capacity is much lower than that of the control group. Animals under stress have fragmented DNA. Treatment with cinnamaldehyde increased overall antioxidant capacity and seminal parameters, and rats behaved most like controls. Conclusion: CA restores malondialdehyde levels, total antioxidant capacity, sperm characteristics and mitigates testicular damage in rats exposed to experimental HS.

2.
Biomedicines ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672209

ABSTRACT

Aspartame, a widely used artificial sweetener, is present in many food products and beverages worldwide. It has been linked to potential neurotoxicity and developmental defects. However, its teratogenic effect on embryonic development and the underlying potential mechanisms need to be elucidated. We investigated the concentration- and time-dependent effects of aspartame on zebrafish development and teratogenicity. We focused on the role of sirtuin 1 (SIRT1) and Forkhead-box transcription factor (FOXO), two proteins that play key roles in neurodevelopment. It was found that aspartame exposure reduced the formation of larvae and the development of cartilage in zebrafish. It also delayed post-fertilization development by altering the head length and locomotor behavior of zebrafish. RNA-sequencing-based DEG analysis showed that SIRT1 and FOXO3a are involved in neurodevelopment. In silico and in vitro analyses showed that aspartame could target and reduce the expression of SIRT1 and FOXO3a proteins in neuron cells. Additionally, aspartame triggered the reduction of autophagy flux by inhibiting the nuclear translocation of SIRT1 in neuronal cells. The findings suggest that aspartame can cause developmental defects and teratogenicity in zebrafish embryos and reduce autophagy by impairing the SIRT1/FOXO3a axis in neuron cells.

3.
Biomedicines ; 11(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37509695

ABSTRACT

Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for delivering these therapeutics across the blood-brain barrier to treat Alzheimer's disease (AD). This review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally, it investigates the critical BEV networks in the microbiome-gut-brain axis, their defensive and offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the autophagy-lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude, this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly discover new therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...