Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Eur J Radiol ; 178: 111598, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38996737

ABSTRACT

PURPOSE: This review aims to explore the role of Quantitative Susceptibility Mapping (QSM) in the early detection of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Lewy body dementia (LBD). By examining QSM's ability to map brain iron deposition, we seek to highlight its potential as a diagnostic tool for preclinical dementia. METHODOLOGY: QSM techniques involve the advanced processing of MRI phase images to reconstruct tissue susceptibility, employing methods such as spherical mean value filtering and Tikhonov regularization for accurate background field removal. This review discusses how these methodologies enable the precise quantification of iron and other elements within the brain. RESULTS: QSM has demonstrated effectiveness in identifying early pathological changes in key brain regions, including the hippocampus, basal ganglia, and substantia nigra. These regions are significantly impacted in the early stages of AD and LBD. Studies reviewed indicate that QSM can detect subtle neurodegenerative changes, providing valuable insights into disease progression. However, challenges remain in standardizing QSM processing algorithms to ensure consistent results across different studies. CONCLUSION: QSM emerges as a promising tool for early dementia detection, offering precise measurements of brain iron deposition and other critical biomarkers. The review underscores the importance of refining QSM methodologies and integrating them with other imaging modalities to improve early diagnosis and management of neurodegenerative diseases. Future research should focus on standardizing QSM techniques and exploring their synergistic use with other neuroimaging methods to enhance its clinical utility.

2.
J Med Imaging (Bellingham) ; 11(3): 035003, 2024 May.
Article in English | MEDLINE | ID: mdl-38827777

ABSTRACT

Purpose: There are a number of algorithms for smooth l0-norm (SL0) approximation. In most of the cases, sparsity level of the reconstructed signal is controlled by using a decreasing sequence of the modulation parameter values. However, predefined decreasing sequences of the modulation parameter values cannot produce optimal sparsity or best reconstruction performance, because the best choice of the parameter values is often data-dependent and dynamically changes in each iteration. Approach: We propose an adaptive compressed sensing magnetic resonance image reconstruction using the SL0 approximation method. The SL0 approach typically involves one-step gradient descent of the SL0 approximating function parameterized with a modulation parameter, followed by a projection step onto the feasible solution set. Since the best choice of the parameter values is often data-dependent and dynamically changes in each iteration, it is preferable to adaptively control the rate of decrease of the parameter values. In order to achieve this, we solve two subproblems in an alternating manner. One is a sparse regularization-based subproblem, which is solved with a precomputed value of the parameter, and the second subproblem is the estimation of the parameter itself using a root finding technique. Results: The advantage of this approach in terms of speed and accuracy is illustrated using a compressed sensing magnetic resonance image reconstruction problem and compared with constant scale factor continuation based SL0-norm and adaptive continuation based l1-norm minimization approaches. The proposed adaptive estimation is found to be at least twofold faster than automated parameter estimation based iterative shrinkage-thresholding algorithm in terms of CPU time, on an average improvement of reconstruction performance 15% in terms of normalized mean squared error. Conclusions: An adaptive continuation-based SL0 algorithm is presented, with a potential application to compressed sensing (CS)-based MR image reconstruction. It is a data-dependent adaptive continuation method and eliminates the problem of searching for appropriate constant scale factor values to be used in the CS reconstruction of different types of MRI data.

3.
Med Phys ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888202

ABSTRACT

BACKGROUND: Oxygen extraction fraction (OEF) and deoxyhemoglobin (DoHb) levels reflect variations in cerebral oxygen metabolism in demented patients. PURPOSE: Delineating the metabolic profiles evident throughout different phases of dementia necessitates an integrated analysis of OEF and DoHb levels. This is enabled by leveraging high-resolution quantitative blood oxygenation level dependent (qBOLD) analysis of magnitude images obtained from a multi-echo gradient-echo MRI (mGRE) scan performed on a 3.0 Tesla scanner. METHODS: Achieving superior spatial resolution in qBOLD necessitates the utilization of an mGRE scan with only four echoes, which in turn limits the number of measurements compared to the parameters within the qBOLD model. Consequently, it becomes imperative to discard non-essential parameters to facilitate further analysis. This process entails transforming the qBOLD model into a format suitable for fitting the log-magnitude difference (L-MDif) profiles of the four echo magnitudes present in each brain voxel. In order to bolster spatial specificity, the log-difference qBOLD model undergoes refinement into a representative form, termed as r-qBOLD, particularly when applied to class-averaged L-MDif signals derived through k-means clustering of L-MDif signals from all brain voxels into a predetermined number of clusters. The agreement between parameters estimated using r-qBOLD for different cluster sizes is validated using Bland-Altman analysis, and the model's goodness-of-fit is evaluated using a χ 2 ${\chi ^2}$ -test. Retrospective MRI data of Alzheimer's disease (AD), mild cognitive impairment (MCI), and non-demented patients without neuropathological disorders, pacemakers, other implants, or psychiatric disorders, who completed a minimum of three visits prior to MRI enrolment, are utilized for the study. RESULTS: Utilizing a cohort comprising 30 demented patients aged 65-83 years in stages 4-6 representing mild, moderate, and severe stages according to the clinical dementia rating (CDR), matched with an age-matched non-demented control group of 18 individuals, we conducted joint observations of OEF and DoHb levels estimated using r-qBOLD. The observations elucidate metabolic signatures in dementia based on OEF and DoHb levels in each voxel. Our principal findings highlight the significance of spatial patterns of metabolic profiles (metabolic patterns) within two distinct regimes: OEF levels exceeding the normal range (S1-regime), and OEF levels below the normal range (S2-regime). The S1-regime, accompanied by low DoHb levels, predominantly manifests in fronto-parietal and perivascular regions with increase in dementia severity. Conversely, the S2-regime, accompanied by low DoHb levels, is observed in medial temporal (MTL) regions. Other regions with abnormal metabolic patterns included the orbitofrontal cortex (OFC), medial-orbital prefrontal cortex (MOPFC), hypothalamus, ventro-medial prefrontal cortex (VMPFC), and retrosplenial cortex (RSP). Dysfunction in the OFC and MOPFC indicated cognitive and emotional impairment, while hypothalamic involvement potentially indicated preclinical dementia. Reduced metabolic activity in the RSP suggested early-stage AD related functional abnormalities. CONCLUSIONS: Integrated analysis of OEF and DoHb levels using r-qBOLD reveals distinct metabolic signatures across dementia phases, highlighting regions susceptible to neuronal loss, vascular involvement, and preclinical indicators.

4.
Protein Sci ; 33(6): e5023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801214

ABSTRACT

Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.


Subject(s)
HSP90 Heat-Shock Proteins , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , src-Family Kinases/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics , HEK293 Cells , Protein Stability , Mutation , Enzyme Stability , Fluorescence
5.
Am J Case Rep ; 25: e943411, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648203

ABSTRACT

BACKGROUND Over the past 30 years, painful reactions during magnetic resonance imaging (MRI) in tattooed individuals have been sporadically reported. These complications manifest as burning pain in tattooed skin areas, occasionally with swelling and redness, often leading to termination of the scanning. The exact cause is unclear, but iron oxide pigments in permanent make-up or elements in carbon black tattoos may play a role. Additionally, factors like tattoo age, design, and color may influence reactions. The existing literature lacks comprehensive evidence, leaving many questions unanswered. CASE REPORT We present the unique case of a young man who experienced recurring painful reactions in a recently applied black tattoo during multiple MRI scans. Despite the absence of ferrimagnetic ingredients in the tattoo ink, the patient reported intense burning sensations along with transient erythema and edema. Interestingly, the severity of these reactions gradually decreased over time, suggesting a time-dependent factor contributing to the problem. This finding highlights the potential influence of pigment particle density in the skin on the severity and risk of MRI interactions. We hypothesize that the painful sensations could be triggered by excitation of dermal C-fibers by conductive elements in the tattoo ink, likely carbon particles. CONCLUSIONS Our case study highlights that MRI-induced tattoo reactions may gradually decrease over time. While MRI scans occasionally can cause transient reactions in tattoos, they do not result in permanent skin damage and remain a safe and essential diagnostic tool. Further research is needed to understand the mechanisms behind these reactions and explore preventive measures.


Subject(s)
Magnetic Resonance Imaging , Tattooing , Humans , Tattooing/adverse effects , Male , Adult , Prospective Studies , Ink
7.
Chemosphere ; 351: 141220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224749

ABSTRACT

Hydrogen (H2) generation by electrochemical water splitting is a key technique for sustainable energy applications. Two-dimensional (2D) transition-metal dichalcogenide (MoS2) and silver phosphate (Ag3PO4) possess excellent electrochemical hydrogen evolution reaction (HER) properties when they are combined together as a composite rather than individuals. Reports examining the HER activity by using Ag3PO4, especially, in combination with the 2D layered MoS2 are limited in literature. The weight fraction of MoS2 in Ag3PO4 is optimized for 1, 3, and 5 wt%. The Ag3PO4/1 wt % MoS2 combination exhibits enhanced HER activity with least overpotential of 235 mV among the other samples in the acidic medium. The synergistic effect of optimal nano-scale 2D layered MoS2 structure and Ag3PO4 is essential for creating higher electrochemical active surface area of 217 mF/cm2, and hence this leads to faster reaction kinetics in the HER. This work suggests the advantages of Ag3PO4/1 wt % MoS2 heterogeneous composite catalyst for electrochemical analysis and HER indicating lower resistivity and low Tafel slope value (179 mV/dec) among the prepared catalysts making it a promising candidate for its use in practical energy applications.


Subject(s)
Molybdenum , Nanostructures , Humans , Hydrogen , Kinetics , Physics
8.
Magn Reson Med ; 91(4): 1707-1722, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38084410

ABSTRACT

PURPOSE: To develop a method for unwrapping temporally undersampled and nonlinear gradient recalled echo (GRE) phase. THEORY AND METHODS: Temporal unwrapping is performed as a sequential one step prediction of the echo phase, followed by a correction to the nearest integer wrap-count. A spatio-temporal extension of the 1D predictor corrector unwrapping (PCU) algorithm improves the prediction accuracy, and thereby maintains spatial continuity. The proposed method is evaluated using numerical phantom, physical phantom, and in vivo brain data at both 3 T and 9.4 T. The unwrapping performance is compared with the state-of-the-art temporal and spatial unwrapping algorithms, and the spatio-temporal iterative virtual-echo based Nyquist sampled (iVENyS) algorithm. RESULTS: Simulation results showed significant reduction in unwrapping errors at higher echoes compared with the state-of-the-art algorithms. Similar to the iVENyS algorithm, the PCU algorithm was able to generate spatially smooth phase images for in vivo data acquired at 3 T and 9.4 T, bypassing the use of additional spatial unwrapping step. A key advantage over iVENyS algorithm is the superior performance of PCU algorithm at higher echoes. CONCLUSION: PCU algorithm serves as a robust phase unwrapping method for temporally undersampled and nonlinear GRE phase, particularly in the presence of high field gradients.


Subject(s)
Algorithms , Brain , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Head , Computer Simulation
9.
Biomater Adv ; 156: 213698, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006785

ABSTRACT

The transfusion of donor red blood cells (RBCs) is seriously hampered by important drawbacks that include limited availability and portability, the requirement of being stored in refrigerated conditions, a short shelf life or the need for RBC group typing and crossmatching. Thus, hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) which make use of the main component of RBCs and the responsible protein for O2 transport, hold a lot of promise in modern transfusion and emergency medicine. Despite the great progress achieved, it is still difficult to create HBOCs with a high Hb content to attain the high O2 demands of our body. Herein a metal-phenolic self-assembly approach that can be conducted in water and in one step to prepare nanoparticles (NPs) fully made of Hb (Hb-NPs) is presented. In particular, by combining Hb with polyethylene glycol, tannic acid (TA) and manganese ions, spherical Hb-NPs with a uniform size around 350-525 nm are obtained. The functionality of the Hb-NPs is preserved as shown by their ability to bind and release O2 over multiple rounds. The binding mechanism of TA and Hb is thoroughly investigated by UV-vis absorption and fluorescence spectroscopy. The binding site number, apparent binding constant at two different temperatures and the corresponding thermodynamic parameters are identified. The results demonstrate that the TA-Hb interaction takes place through a static mechanism in a spontaneous process as shown by the decrease in Gibbs free energy. The associated increase in entropy suggests that the TA-Hb binding is dominated by hydrophobic interactions.


Subject(s)
Blood Substitutes , Nanoparticles , Oxygen/chemistry , Oxygen/metabolism , Blood Substitutes/chemistry , Hemoglobins/chemistry , Hemoglobins/metabolism , Nanoparticles/chemistry , Metals
10.
Front Microbiol ; 14: 1275918, 2023.
Article in English | MEDLINE | ID: mdl-38053559

ABSTRACT

Hospital bloodstream infection (BSI) caused by methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of morbidity and mortality and is frequently related to invasive procedures and medically complex patients. An important feature of MRSA is the clonal structure of its population. Specific MRSA clones may differ in their pathogenic, epidemiological, and antimicrobial resistance profiles. Whole-genome sequencing is currently the most robust and discriminatory technique for tracking hypervirulent/well-adapted MRSA clones. However, it remains an expensive and time-consuming technique that requires specialized personnel. In this work, we describe a pangenome protocol, based on binary matrix (1,0) of open reading frames (ORFs), that can be used to quickly find diagnostic, apomorphic sequence mutations that can serve as biomarkers. We use this technique to create a diagnostic screen for MRSA isolates circulating in the Rio de Janeiro metropolitan area, the RdJ clone, which is prevalent in BSI. The method described here has 100% specificity and sensitivity, eliminating the need to use genomic sequencing for clonal identification. The protocol used is relatively simple and all the steps, formulas and commands used are described in this work, such that this strategy can also be used to identify other MRSA clones and even clones from other bacterial species.

11.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106090

ABSTRACT

Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We monitor the fluorescence of kinases fused to a fluorescent protein relative to that of a co-expressed reference fluorescent protein. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 (SH2) and Src-homology 3 (SH3) domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.

12.
J Glaucoma ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38031295

ABSTRACT

OBJECTIVE: Timely detection of glaucoma is key to preventing or delaying vision loss. This study aimed to assess whether the routine use of optical coherence tomography (OCT) by optometrists for detection of glaucomatous changes in the optic nerve and retina increased glaucoma referrals to ophthalmologists. DESIGN: This study was a retrospective review of routinely-collected electronic medical records of patients from a chain of 331 optometry practices in Australia. PARTICIPANTS: Electronic medical records were reviewed for every patient aged 18-99 years who attended an included practice between January 1 and July 31, 2019. METHODS: Odds of referral for glaucoma assessment were compared between practices performing OCT routinely on all patients (OCT practices, n=175) and without OCT (non-OCT practices, n=20). A subset of referrals were assessed by ophthalmologists to determine the false positive referral rate. MAIN OUTCOME MEASURES: The primary outcome measure of this study was referral to an ophthalmologist for glaucoma assessment. A secondary outcome was the rate of false positive referrals, analysed in a subset of patients referred for glaucoma assessment. RESULTS: Records from 994,461 patients (59% female) were included and 10,475 (1.1%) were referred for glaucoma assessment. Most referrals were associated with normal intraocular pressure (non-OCT practices: n=496, 66%; OCT practices: n=6,603, 68%). Referral for glaucoma was higher in OCT practices (n=9,719, 1.1%) compared to non-OCT practices (n=756, 0.8%, age-, gender- and location-adjusted odds ratio 1.39, 95% confidence interval 1.10-1.76). Of 318 referred patients (3%, all from OCT practices) for whom ophthalmologist feedback was available, 68 (21%) were considered not to have glaucoma. CONCLUSIONS: The routine use of OCT in optometric practice may lead to more timely glaucoma detection and prevention of avoidable vision loss.

13.
Antibiotics (Basel) ; 12(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887231

ABSTRACT

Streptococcus pyogenes is known to be associated with a variety of infections, from pharyngitis to necrotizing fasciitis (flesh-eating disease). S. pyogenes of the ST62/emm87 lineage is recognized as one of the most frequently isolated lineages of invasive infections caused by this bacterium, which may be involved in hospital outbreaks and cluster infections. Despite this, comparative genomic and phylogenomic studies have not yet been carried out for this lineage. Thus, its virulence and antimicrobial susceptibility profiles are mostly unknown, as are the genetic relationships and evolutionary traits involving this lineage. Previously, a strain of S. pyogenes ST62/emm87 (37-97) was characterized in our lab for its ability to generate antibiotic-persistent cells, and therapeutic failure in severe invasive infections caused by this bacterial species is well-reported in the scientific literature. In this work, we analyzed genomic and phylogenomic characteristics and evaluated the virulence and resistance profiles of ST62/emm87 S. pyogenes from Brazil and international sources. Here we show that strains that form this lineage (ST62/emm87) are internationally spread, involved in invasive outbreaks, and share important virulence profiles with the most common emm types of S. pyogenes, such as emm1, emm3, emm12, and emm69, which are associated with most invasive infections caused by this bacterial species in the USA and Europe. Accordingly, the continued increase of ST62/emm87 in severe S. pyogenes diseases should not be underestimated.

14.
Transl Vis Sci Technol ; 12(8): 20, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37615641

ABSTRACT

Purpose: Drug delivery to the retina remains a challenge due to ocular barriers and fast clearing mechanisms. Nanocarrier drug delivery systems (NDDSs) hold the promise of prolonging intraocular retention times and increasing drug concentrations in the retina. Methods: Anionic and cationic PEGylated liposomes, loaded with oxaliplatin (OxPt) to be used as trace element, were prepared from dry lipid powders. The differently charged liposomes were intravitreally injected in C57BL/6JrJ mice; eyes were harvested 2 hours and 24 hours post-injection. To investigate active transport mechanisms in the eye, a subset of mice were pre-injected with chloroquine before injection with cationic liposomes. Eyes were dissected and the distribution of OxPt in different tissues were quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results: Both liposome formulations enhanced the retention time of OxPt in the vitreous over free OxPt. Surprisingly, when formulated in cationic liposomes, OxPt translocated through the retina and accumulated in the RPE-sclera. Pre-injection with chloroquine inhibited the transport of liposomal OxPt from the vitreous to the RPE-sclera. Conclusions: We show that liposomes can enhance the retention time of small molecular drugs in the vitreous and that active transport mechanisms are involved in the trans retinal transport of NDDS after intravitreal injections. Translational Relevance: These results highlight the need for understanding the dynamics of ocular transport mechanisms in living eyes when designing NDDS with the back of the eye as the target. Active transport of nanocarriers through the retina will limit the drug concentration in the neuronal retina but might be exploited for targeting the RPE.


Subject(s)
Liposomes , Retina , Animals , Mice , Mice, Inbred C57BL , Sclera , Chloroquine , Oxaliplatin
15.
BMC Public Health ; 23(1): 459, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890474

ABSTRACT

BACKGROUND: Healthcare workers play an important part in the delivery of health insurance benefits, and their role in ensuring service quality and availability, access, and good management practice for insured clients is crucial. Tanzania started a government-based health insurance scheme in the 1990s. However, no studies have specifically looked at the experience of healthcare professionals in the delivery of health insurance services in the country. This study aimed to explore healthcare workers' experiences and perceptions of the provision of health insurance benefits for the elderly in rural Tanzania. METHODS: An exploratory qualitative study was conducted in the rural districts of Igunga and Nzega, western-central Tanzania. Eight interviews were carried out with healthcare workers who had at least three years of working experience and were involved in the provision of healthcare services to the elderly or had a certain responsibility with the administration of health insurance. The interviews were guided by a set of questions related to their experiences and perceptions of health insurance and its usefulness, benefit packages, payment mechanisms, utilisation, and availability of services. Qualitative content analysis was used to analyse the data. RESULTS: Three categories were developed that describe healthcare workers´ experiences and perceptions of delivering the benefits of health insurance for the elderly living in rural Tanzania. Healthcare workers perceived health insurance as an important mechanism to increase healthcare access for elderly people. However, alongside the provision of insurance benefits, several challenges coexisted, such as a shortage of human resources and medical supplies as well as operational issues related to delays in funding reimbursement. CONCLUSION: While health insurance was considered an important mechanism to facilitate access to care among rural elderly, several challenges that impede its purpose were mentioned by the participants. Based on these, an increase in the healthcare workforce and availability of medical supplies at the health-centre level together with expansion of services coverage of the Community Health Fund and improvement of reimbursement procedures are recommended to achieve a well-functioning health insurance scheme.


Subject(s)
Health Personnel , Insurance Benefits , Humans , Aged , Tanzania , Qualitative Research , Insurance, Health
16.
Int J Biol Macromol ; 235: 123658, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36822285

ABSTRACT

The growing interest in biopharmaceuticals combined with the challenges regarding formulation and delivery continues to encourage the development of new and improved formulations of this class of therapeutics. Nanoclusters (NCs) represent a type of formulation strategy where the biopharmaceutical is clustered in a reversible manner to function as both the therapeutic and the vehicle. In this study, insulin NCs (INCs) were formulated by a new methodology of first crosslinking proteins followed by desolvation. Crosslinking of the protein with the reducible DTSSP crosslinker improved control of the INC synthesis process to give INCs with a mean size of 198 ± 7 nm and a mean zeta potential of -39 ± 1 mV. Crosslinking and clustering of insulin did not induce cytotoxicity or major differences in the biological activity compared to the free unmodified protein. The potency of the crosslinked insulin and the INCs appeared slightly lower than that of the unmodified protein, and significantly higher doses of the INCs compared to the free protein were applied to achieve similar blood sugar lowering effects in vivo. Interestingly, the INCs allowed for high doses to be subcutaneously delivered with prolonged efficacy without being lethal in rats.


Subject(s)
Insulin , Proteins , Rats , Animals , Delayed-Action Preparations/pharmacology , Excipients
18.
J Antimicrob Chemother ; 77(12): 3340-3348, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36173394

ABSTRACT

BACKGROUND: Typing of staphylococcal cassette chromosome mec (SCCmec) elements is commonly used for studies on the molecular epidemiology of MRSA. OBJECTIVES: To perform an investigation centred on uncovering the reasons for misclassification of MRSA clonal complex 5 (CC5) SCCmec type II clinical isolates in our laboratory. METHODS: MRSA isolates from CC5 were subjected to WGS and SCCmec typing. RESULTS: This investigation led to the discovery that the classification failure was due to an insertion of IS1272 carrying the fabI gene on a transposable element (TnSha1) that confers increased MIC to the biocide triclosan. Genomic analysis revealed that fabI was present in 25% of the CC5 MRSA isolates sampled. The frequency of TnSha1 in our collection was much higher than that observed among publicly available genomes (0.8%; n = 24/3142 CC5 genomes). Phylogenetic analyses revealed that genomes in different CC5 clades carry TnSha1 inserted in different integration sites, suggesting that this transposon has entered CC5 MRSA genomes on multiple occasions. In at least two genotypes, ST5-SCCmecII-t539 and ST5-SCCmecII-t2666, TnSha1 seems to have entered prior to their divergence. CONCLUSIONS: Our work highlights an important misclassification problem of SCCmecII in isolates harbouring TnSha1 when Boye's method is used for typing, which could have important implications for molecular epidemiology of MRSA. The importance of increased-MIC phenotype is still a matter of controversy that deserves more study given the widespread use of triclosan in many countries. Our results suggest expanding prevalence that may indicate strong selection for this phenotype.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Triclosan , Humans , Staphylococcal Infections/epidemiology , Triclosan/pharmacology , Microbial Sensitivity Tests , Phylogeny , DNA, Bacterial/genetics , Chromosomes
19.
Biomater Adv ; 134: 112691, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35581082

ABSTRACT

Despite being an indispensable clinical procedure, the transfusion of donor blood has important limitations including a short shelf-life, limited availability and specific storage requirements. Therefore, a lot of effort has been devoted to developing hemoglobin (Hb)-based oxygen carriers (HBOCs) that are able to replace or complement standard blood transfusions, especially in extreme life-threatening situations. Herein, we employed a Hb-loaded poly(lactide-co-glycolide) core which was subsequently coated with nanozymes to protect the encapsulated Hb from oxidation by reactive oxygen species. To render HBOCs with long circulation in the vasculature, which is a crucial requirement to achieve the high oxygen demands of our organism, the carrier was coated with a red blood cell-derived membrane. Three coating methods were explored and evaluated by their ability to repel the deposition of proteins and minimize their uptake by an endothelial cell line. Preservation of the oxygen carrying capacity of the membrane-coated carrier was demonstrated by an oxygen-binding and releasing assay and, the functionality resulting from the entrapped nanozymes, was shown by means of superoxide radical anion and hydrogen peroxide depletion assays. All in all, we have demonstrated the potential of the membrane-coated nanocarriers as novel oxygen carrying systems with both antioxidant and stealth properties.


Subject(s)
Blood Substitutes , Blood Substitutes/chemistry , Erythrocyte Count , Erythrocytes/metabolism , Hemoglobins/chemistry , Oxygen/chemistry
20.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35550554

ABSTRACT

BACKGROUND: Vaginal melanoma (VM) is a rare cancer and has a poor response to immune checkpoint blockade (ICB). CD8+Tissue Resident Memory (TRM) T cells proliferate in response to ICB and correlate with longer survival in metastatic cutaneous melanoma. However, their capacity to respond to VM and their neoantigens is not known. METHODS: Using longitudinal samples, we explored the evolution of VM mutations by whole-exome sequencing and RNAseq, we also defined the immune context using multiplex immunohistochemistry and nanostring pan cancer immune profile. Then using fresh single cell suspensions of the metastatic samples, we explored VM T cells via mass cytometry and single cell RNAseq and T cell receptor sequencing (TCRseq). Finally, we investigated TRM, pre-TRM and exhausted T cell function against melanoma neo-antigens and melanoma differentiation antigens in vitro. RESULTS: Primary VM was non-inflamed and devoid of CD8+ TRM cells. In contrast, both metastases showed proliferating CD8+ TRM were clustered at the tumor margin, with increased numbers in the second ICB-refractory metastasis. The first metastasis showed dense infiltration of CD8+ T cells, the second showed immune exclusion with loss of melanoma cell Major histocompatibility complex (MHC)-I expression associated with downregulation of antigen presentation pathway gene expression. CD8+ TRM from both metastases responded to autologous melanoma cells more robustly than all other CD8+ T cell subsets. In addition, CD8+ TRM shared TCR clones across metastases, suggesting a response to common antigens, which was supported by recognition of the same neoantigen by expanded tumor infiltrating lymphocytes. CONCLUSIONS: In this study, we identified TRM clusters in VM metastases from a patient, but not primary disease. We showed TRM location at the tumor margin, and their superior functional response to autologous tumor cells, predicted neoantigens and melanoma differentiation antigens. These CD8+ TRM exhibited the highest tumor-responsive potential and shared their TCR with tumor-infiltrating effector memory T cells. This suggests VM metastases from this patient retain strong antitumor T cell functional responses; however, this response is suppressed in vivo. The loss of VG MHC-I expression is a common immune escape mechanism which was not addressed by anti-PD-1 monotherapy; rather an additional targeted approach to upregulate MHC-I expression is required.


Subject(s)
Melanoma , Skin Neoplasms , CD8-Positive T-Lymphocytes , Female , Humans , Immune Checkpoint Inhibitors , Immunologic Memory , Memory T Cells , Skin Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...