Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Biometals ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154301

ABSTRACT

In the present work, new Co(II) complexes were synthesized from mesogenic aromatic amino acids based Schiff base ligands, HL1 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-phenylpropanoate] and HL2 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-(1H-indol-2-yl)propanoate]. The compounds were thoroughly characterised using different elemental, thermogravimetric and spectroscopic studies. The in-vitro antileishmanial efficacy of the compounds against Leishmania donovani was evaluated by MTT assay and the antioxidant activity was performed by Mensor's method. The cell viability percentage and IC50 values for both the antileishmanial and antioxidant studies revealed that the cobalt(II) complexes are comparable to the standard, amphotericin B and ascorbic acid, respectively, signifying the potential applications of the biogenic compounds. The CT-DNA interaction experiments study using photophysical techniques indicated that the cobalt(II) complexes exhibited pronounced interactions as compared to the parent ligand. The parent ligands were found to possess mesogenicity as evidenced from the polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The optical band gap of the compounds, as estimated from the Tauc plot of the UV-Vis spectra, lies within the domain of optoelectronic material properties, which was further supported through Density Functional Theory (DFT) study. Moreover, DFT methods have been used to explore the ground state geometry and DFT based reactivity descriptors of the two synthesised ligands, HL1 and HL2 along with their corresponding Co(II) complexes, Co(L1)2 and Co(L2)2. Reactivity descriptors obtained from Conceptual Density Functional Theory (CDFT) analysis reveal that Co(L1)2 is the most stable and Co(L2)2 is the most electrophilic.

2.
J Fluoresc ; 27(6): 2295-2311, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28831629

ABSTRACT

Fluorescence properties of N, N'-bis(salicylidene) trans 1, 2-diaminocyclohexane (H 2 L) is used to probe the anionic (SDS), cationic (CTAB) and nonionic (TX-100) micelles as well as in serum albumins (BSA and HSA) and chicken egg white lysozyme (LYZ) by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found to increase with concomitant blue-shift with gradual addition of different surfactants. All the experimental results suggest that the probe molecule resides in the micelle-water interface rather than going into the micellar core. However, the penetration is more towards the micellar hydrocarbon core in nonionic surfactant (TX-100) while comparing with ionic surfactants (SDS and CTAB). Several mean microscopic properties such as critical micelle concentration, polarity parameters and binding constant were calculated in presence of different surfactants. The decrease in nonradiative decay rate constants in micellar environments indicates restricted motion of the probe inside the micellar nanocages with increasing fluorescence emission intensity and quantum yields. Further in this work, we also investigated the interaction behavior of the probe with different proteins at low concentrations under physiological conditions (pH = 7.4). Stern-Volmer analysis of the tryptophan (Trp) fluorescence quenching data in presence of probe reveals Stern-Volmer constant (Ksv) as well as bimolecular quenching rate constant (Kq). The binding constant as well as the number of binding sites of the probe with proteins were also monitored and found to be 1:1 stoichiometry ratio.


Subject(s)
Cyclohexylamines/chemistry , Fluorescent Dyes/chemistry , Micelles , Muramidase/chemistry , Salicylates/chemistry , Schiff Bases/chemistry , Serum Albumin/chemistry , Animals , Cattle , Fluorescence , Humans , Spectrometry, Fluorescence , Surface-Active Agents
3.
J Fluoresc ; 27(4): 1307-1321, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28299532

ABSTRACT

A new coumarin based Schiff-base chemosensor-(E)-7-(((8-hydroxyquinolin-2-yl)methylene) amino)-4-methyl-2H-chromen-2-one (H 11 L) was synthesized and evaluated as a colorimetric sensor for Fe3+ and fluorescence "turn on-off" response of Zn2+ and Cu2+ using absorption and fluorescence spectroscopy. Upon treatment with Fe3+ and Zn2+, the absorption intensity as well as the fluorescence emission intensity increases drastically compared to other common alkali, alkaline earth and transition metal ions, with a distinct color change which provide naked eye detection. Formation of 1:1 metal to ligand complex has been evaluated using Benesi-Hildebrand relation, Job's plot analyses, 1H NMR titration as well as ESI-Mass spectral analysis. The complex solution of H 11 L with Zn2+ ion exhibited reversibility with EDTA and regenerate free ligand for further Zn2+ sensing. H 11 L exhibits two INHIBIT logic gates with two different chemical inputs (i) Zn2+ (IN1) and Cu2+ (IN2) and (ii) Zn2+ (IN1) and EDTA (IN2) and the emission as output. Again, an IMPLICATION logic gate is obtained with Cu2+ and EDTA as chemical inputs and emission as output mode. Both free ligand as well as metal-complexes was optimized using density functional theory to interpret spectral properties. The corresponding energy difference between HOMO-LUMO energy gap for H 11 L, H11L-Zn2+ and H11L-Cu2+ are 2.193, 1.834 and 0.172 eV, respectively.

4.
Article in English | MEDLINE | ID: mdl-25706604

ABSTRACT

Fluorescence properties of Schiff base - N,N'-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.


Subject(s)
Bile Acids and Salts/chemistry , Fluorescent Dyes/chemistry , Phenylenediamines/chemistry , Chenodeoxycholic Acid/chemistry , Deoxycholic Acid/chemistry , Fluorescence , Micelles , Spectrometry, Fluorescence
5.
Article in English | MEDLINE | ID: mdl-25590829

ABSTRACT

A Schiff-base fluorescent probe - 2-((E)-(quinolin-8-ylimino)methyl)quinolin-8-ol (H7L) was synthesized and evaluated as a chemoselective Zn2+ sensor. Upon treatment with Zn2+, the complexation of H7L with Zn2+ resulted in a red shift with a pronounced enhancement in the fluorescence emission intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. Fluorescence studies on H7L and H7L-Zn2+ complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi-Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses. This chemosensor exhibits a very good fluorescence sensing ability to Zn2+ over a wide range of pH.


Subject(s)
Fluorescent Dyes/chemistry , Oxyquinoline/chemistry , Schiff Bases/chemistry , Zinc/analysis , Cations, Divalent/analysis , Fluorescent Dyes/chemical synthesis , Oxyquinoline/chemical synthesis , Schiff Bases/chemical synthesis , Spectrometry, Fluorescence
6.
J Fluoresc ; 24(4): 1099-106, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24740551

ABSTRACT

A Schiff-base fluorescent probe - N, N(/)-bis(salicylidene) trans 1, 2 - diaminocyclohexane (H 2 L) was synthesized and evaluated as a chemoselective Zn(2+) sensor. Upon treatment with Zn(2+), the complexation of H 2 L with Zn(2+) resulted in a bathochromic shift with a pronounced enhancement in the fluorescence intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn(2+) from Cd(2+). The stoichiometric ratio and association constant were evaluated using Benesi - Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses.


Subject(s)
Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Zinc/analysis , Fluorescent Dyes/chemical synthesis , Molecular Structure , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Zinc/chemistry
7.
Article in English | MEDLINE | ID: mdl-24291428

ABSTRACT

A Schiff-base fluorescent compound - N, N'-bis(salicylidene)-1,2 - phenylenediamine (LH2) was synthesized and evaluated as a chemoselective Zn(2+) sensor. Addition of Zn(2+) to ethanol solution of LH2 resulted in a red shift with a pronounced enhancement in the fluorescence intensity. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn(2+) from Cd(2+). Fluorescence studies on free Schiff base ligand LH2 and LH2 - Zn(2+) complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi - Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses.


Subject(s)
Fluorescent Dyes/chemistry , Schiff Bases/chemistry , Zinc/analysis , Hydrogen-Ion Concentration , Ligands , Light , Schiff Bases/chemical synthesis , Solvents/chemistry , Spectrometry, Fluorescence
8.
Chemistry ; 19(39): 13151-9, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-23939837

ABSTRACT

A novel photoluminescent room-temperature liquid-crystalline salicylaldimine Schiff base with a short alkoxy substituent and a series of lanthanide(III) complexes of the type [Ln(LH)3(NO3)3] (Ln = La, Pr, Sm, Gd, Tb, Dy; LH = (E)-5-(hexyloxy)-2-[{2-(2-hydroxyethylamino)ethylimino]methyl}phenol) have been synthesized and characterized by FTIR, (1)H and (13)C NMR, UV/Vis, and FAB-MS analyses. The ligand coordinates to the metal ions in its zwitterionic form. The thermal behavior of the compounds was investigated by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The ligand exhibits an enantiotropic hexagonal columnar (Col(h)) mesophase at room temperature and the complexes show an enantiotropic lamellar columnar (Col(L)) phase at around 120 °C with high thermal stability. Based on XRD results, different space-filling models have been proposed for the ligand and complexes to account for the columnar mesomorphism. The ligand exhibits intense blue emission both in solution and in the condensed state. The most intense emissions were observed for the samarium and terbium complexes, with the samarium complex glowing with a bright-orange light (ca. 560-644 nm) and the terbium complex emitting green light (ca. 490-622 nm) upon UV irradiation. DFT calculations performed by using the DMol3 program at the BLYP/DNP level of theory revealed a nine-coordinate structure for the lanthanide complexes.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 78(5): 1408-15, 2011 May.
Article in English | MEDLINE | ID: mdl-21345718

ABSTRACT

Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (µ(eff)∼5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.


Subject(s)
Ferric Compounds/chemistry , Iron/chemistry , Schiff Bases/chemistry , Electrochemical Techniques , Electrons , Ligands , Magnetic Resonance Spectroscopy , Magnetics , Mass Spectrometry , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry
10.
Inorg Chem ; 36(21): 4684-4687, 1997 Oct 08.
Article in English | MEDLINE | ID: mdl-11670144

ABSTRACT

Reductions, using In(I)(aq) and Ti(III)(aq), of (NH(3))(5)Ru(III) derivatives of pyridines having carbonyl-bearing substituents (-CONH(2), -COOCH(3), and -COC(6)H(5)) yield the corresponding (NH(3))(5)Ru(II) complexes. Reactions with Ti(III) are kinetically straightforward, exhibit only slight responses to structural alteration, and give no indication of inner-sphere mediation involving the carbonyl group. Kinetic profiles for In(I) reductions of the 3-CONH(2), 3-COOCH(3), and 3-COC(6)H(5)-substituted complexes (in the range [H(+)] = 0.030-0.15 M) begin with a nearly linear section, with rates independent of [In(I)], but show curvature during the later stages of reaction. These profiles are consistent with a reaction sequence in which the predominant carbonyl form of the oxidant is hydrated to a more reactive gem-diol form (>C=O + H(2)O right harpoon over left harpoon >C(OH)(2)), which undergoes reduction by In(I), yielding the observed Ru(II) product and In(II). The latter is then rapidly consumed by a second unit of Ru(III). Rate constants for the hydration step giving optimal fit to the experimental curves are 6 x 10(-4) s(-1) (for the 3-CONH(2) complex) and 1.3 x 10(-3) s(-1) (for the 3-COOCH(3) oxidant). Lower limits for the rate of attack by In(I) on the active forms of the oxidants are estimated as 10(3.3)-10(4.6) M(-1) s(-1), about 10(2)-10(3) times are rapid as the reduction of the unsubstituted pyridine complex. Our results suggest the utilization, by In(I), of a hydroxyl-bridged path featuring the sequence In(I)-OH-C(OH)-py in these reductions, a path which is overshadowed, in the case Ti(III) reactions, by a more facile outer-sphere process.

SELECTION OF CITATIONS
SEARCH DETAIL