Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(4-2): 045207, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36397594

ABSTRACT

A wide-range (0 to 1044.0 g/cm^{3} and 0 to 10^{9} K) equation-of-state (EOS) table for a CH_{1.72}O_{0.37}N_{0.086} quaternary compound has been constructed based on density-functional theory (DFT) molecular-dynamics (MD) calculations using a combination of Kohn-Sham DFT MD, orbital-free DFT MD, and numerical extrapolation. The first-principles EOS data are compared with predictions of simple models, including the fully ionized ideal gas and the Fermi-degenerate electron gas models, to chart their temperature-density conditions of applicability. The shock Hugoniot, thermodynamic properties, and bulk sound velocities are predicted based on the EOS table and compared to those of C-H compounds. The Hugoniot results show the maximum compression ratio of the C-H-O-N resin is larger than that of CH polystyrene due to the existence of oxygen and nitrogen; while the other properties are similar between CHON and CH. Radiation hydrodynamic simulations have been performed using the table for inertial confinement fusion targets with a CHON ablator and compared with a similar design with CH. The simulations show CHON outperforms CH as the ablator for laser-direct-drive target designs.

2.
Nat Commun ; 13(1): 2534, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534461

ABSTRACT

The properties of all materials at one atmosphere of pressure are controlled by the configurations of their valence electrons. At extreme pressures, neighboring atoms approach so close that core-electron orbitals overlap, and theory predicts the emergence of unusual quantum behavior. We ramp-compress monovalent elemental sodium, a prototypical metal at ambient conditions, to nearly 500 GPa (5 million atmospheres). The 7-fold increase of density brings the interatomic distance to 1.74 Å well within the initial 2.03 Å of the Na+ ionic diameter, and squeezes the valence electrons into the interstitial voids suggesting the formation of an electride phase. The laser-driven compression results in pressure-driven melting and recrystallization in a billionth of a second. In situ x-ray diffraction reveals a series of unexpected phase transitions upon recrystallization, and optical reflectivity measurements show a precipitous decrease throughout the liquid and solid phases, where the liquid is predicted to have electronic localization. These data reveal the presence of a rich, temperature-driven polymorphism where core electron overlap is thought to stabilize the formation of peculiar electride states.

SELECTION OF CITATIONS
SEARCH DETAIL
...