Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Photochem Photobiol ; 100(4): 897-909, 2024.
Article in English | MEDLINE | ID: mdl-38752609

ABSTRACT

Large Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift). These LSS-RFPs (absorbing blue light and emitting red light) feature a unique photocycle responsible for their significant Stokes shift. The photocycle associated with this LSS characteristic in certain RFPs is quite perplexing, hinting at the complex nature of excited-state photophysics. This article provides a brief review on the fundamental mechanisms governing the photocycle of various LSS-RFPs, followed by a discussion on experimental results on mKeima emphasizing its relaxation pathways which garnered attention due to its >200 nm Stokes shift. Corroborating steady-state spectroscopy with computational studies, four different forms of chromophore of mKeima contributing to the cis-trans conformers of the neutral and anionic forms were identified in a recent study. Furthering these findings, in this account a detailed discussion on the photocycle of mKeima, which encompasses sequential excited-state isomerization, proton transfer, and subsequent structural reorganization involving three isomers, leading to an intriguing temperature and pH-dependent dual fluorescence, is explored using broadband femtosecond transient absorption spectroscopy.


Subject(s)
Luminescent Proteins , Red Fluorescent Protein , Luminescent Proteins/chemistry , Photochemical Processes
2.
J Phys Chem B ; 127(14): 3197-3207, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37014205

ABSTRACT

Elucidating the origin of large Stokes shift (LSS) in certain fluorescent proteins absorbing in blue/blue-green and emitting in red/far-red has been quite illusive. Using a combination of spectroscopic measurements, corroborated by theoretical calculations, the presence of four distinct forms of the chromophore of the red fluorescent protein mKeima is confirmed, two of which are found to be emissive: a feeble bluish-green fluorescence (∼520 nm), which is enhanced appreciably in a low pH or deuterated medium but significantly at cryogenic temperatures, and a strong emission in red (∼615 nm). Using femtosecond transient absorption spectroscopy, the trans-protonated form is found to isomerize within hundreds of femtoseconds to the cis-protonated form, which further yields the cis-deprotonated form within picoseconds followed by structural reorganization of the local environment of the chromophore. Thus, the mechanism of LSS is substantiated to proceed via stepwise excited-state isomerization followed by proton transfer involving three isomers, leaving the fourth one (trans-deprotonated) as a bystander. The exquisite pH sensitivity of the dual emission is further exploited in fluorescence microscopy.


Subject(s)
Protons , Isomerism , Luminescent Proteins/chemistry , Spectrum Analysis , Temperature , Hydrogen-Ion Concentration , Green Fluorescent Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL