Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 14: 878276, 2022.
Article in English | MEDLINE | ID: mdl-36072483

ABSTRACT

Alzheimer's disease (AD) is a severe neurodegenerative disorder of the brain that manifests as dementia, disorientation, difficulty in speech, and progressive cognitive and behavioral impairment. The emerging therapeutic approach to AD management is the inhibition of ß-site APP cleaving enzyme-1 (BACE1), known to be one of the two aspartyl proteases that cleave ß-amyloid precursor protein (APP). Studies confirmed the association of high BACE1 activity with the proficiency in the formation of ß-amyloid-containing neurotic plaques, the characteristics of AD. Only a few FDA-approved BACE1 inhibitors are available in the market, but their adverse off-target effects limit their usage. In this paper, we have used both ligand-based and target-based approaches for drug design. The QSAR study entails creating a multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model using 552 molecules with acceptable statistical performance (R 2 = 0.82, Q 2 loo = 0.81). According to the QSAR study, the activity has a strong link with various atoms such as aromatic carbons and ring Sulfur, acceptor atoms, sp2-hybridized oxygen, etc. Following that, a database of 26,467 food compounds was primarily used for QSAR-based virtual screening accompanied by the application of the Lipinski rule of five; the elimination of duplicates, salts, and metal derivatives resulted in a truncated dataset of 8,453 molecules. The molecular descriptor was calculated and a well-validated 6-parametric version of the QSAR model was used to predict the bioactivity of the 8,453 food compounds. Following this, the food compounds whose predicted activity (pKi) was observed above 7.0 M were further docked into the BACE1 receptor which gave rise to the Identification of 4-(3,4-Dihydroxyphenyl)-2-hydroxy-1H-phenalen-1-one (PubChem I.D: 4468; Food I.D: FDB017657) as a hit molecule (Binding Affinity = -8.9 kcal/mol, pKi = 7.97 nM, Ki = 10.715 M). Furthermore, molecular dynamics simulation for 150 ns and molecular mechanics generalized born and surface area (MMGBSA) study aided in identifying structural motifs involved in interactions with the BACE1 enzyme. Molecular docking and QSAR yielded complementary and congruent results. The validated analyses can be used to improve a drug/lead candidate's inhibitory efficacy against the BACE1. Thus, our approach is expected to widen the field of study of repurposing nutraceuticals into neuroprotective as well as anti-cancer and anti-viral therapeutic interventions.

2.
J Biol Chem ; 293(50): 19303-19316, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30309986

ABSTRACT

Functional up-regulation of heat shock factor 1 (HSF1) activity through different posttranslational modifications has been implicated in the survival and proliferation of various cancers. It is increasingly recognized that the HSF1 gene is also up-regulated at the transcriptional level, a phenomenon correlated with poor prognosis for patients with different cancers, including breast cancer. Here, we analyzed the transcriptional up-regulation of HSF1 in human cells upon arsenite- or peroxide-induced oxidative stress. Sequential promoter truncation coupled with bioinformatics analysis revealed that this activation is mediated by two antioxidant response elements (AREs) located between 1707 and 1530 bp upstream of the transcription start site of the HSF1 gene. Using shRNA-mediated down-regulation, ChIP of NRF2, site-directed mutagenesis of the AREs, and DNase I footprinting of the HSF1 promoter, we confirmed that nuclear factor erythroid-derived 2-like 2 (NRF2, also known as NFE2L2) interacts with these AREs and up-regulates HSF1 expression. We also found that BRM/SWI2-related gene 1 (BRG1), a catalytic subunit of SWI2/SNF2-like chromatin remodeler, is involved in this process. We further show that NRF2-dependent HSF1 gene regulation plays a crucial role in cancer cell biology, as interference with NRF2-mediated HSF1 activation compromised survival, migration potential, and the epithelial-to-mesenchymal transition and autophagy in MCF7 breast cancer cells exposed to oxidative stress. Taken together, our findings unravel the mechanistic basis of HSF1 gene regulation in cancer cells and provide molecular evidence supporting a direct interaction between HSF1 and NRF2, critical regulators of two cytoprotective mechanisms exploited by cancer cells.


Subject(s)
Cell Movement/genetics , Heat Shock Transcription Factors/genetics , NF-E2-Related Factor 2/genetics , Oxidative Stress/genetics , Promoter Regions, Genetic/genetics , Arsenites/pharmacology , Base Sequence , Binding Sites , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Humans , Oxidative Stress/drug effects
3.
Oncotarget ; 7(48): 78281-78296, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27835876

ABSTRACT

Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.


Subject(s)
DNA/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Heat Shock Transcription Factors/metabolism , Limonins/pharmacology , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/pharmacology , Peptides/metabolism , Plant Extracts/pharmacology , Protein Aggregation, Pathological , Animals , Azadirachta/chemistry , DNA/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , HCT116 Cells , HEK293 Cells , Heat Shock Transcription Factors/genetics , Humans , Limonins/isolation & purification , Limonins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/metabolism , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Protein Binding , Seeds , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...