Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 118: 199-217, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28648997

ABSTRACT

Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt-affected soils.


Subject(s)
Crop Production , Fabaceae/growth & development , Germination , Photosynthesis , Salinity , Stress, Physiological , Mycorrhizae/growth & development , Plant Growth Regulators/metabolism
2.
Funct Plant Biol ; 42(10): 1010-1018, 2015 Oct.
Article in English | MEDLINE | ID: mdl-32480740

ABSTRACT

Drought is one of the most important abiotic stresses constraining crop productivity worldwide. The objective of the present study was to investigate the differences in drought tolerance at leaf and stomatal level of black gram (genotypes: T9, KU 301, PU 19, USJD 113) and green gram (genotypes: Pratap, SG 21-5, SGC 16, TMB 37). Drought was applied for fifteen consecutive days at flowering stage (35 days after sowing). Mid-day leaf water potential (ΨL), leaf area, photosynthesis rate (PN), leaf chlorophyll, stomatal conductance (gs) and seed yield of drought- treated plants were calculated relative to those of well watered plants. Stomatal characteristics were observed in terms of stomatal frequency (SF) and stomatal aperture size (SA). Among the studied genotypes, T9 (black gram) and Pratap (green gram) proved their better tolerance capacity to drought by maintaining higher leaf area, ΨL, PN, leaf chlorophyll, gs and SA which contributed to better seed yield. Between the two crops, green gram appeared to be affected to a greater extent, as it experienced higher reduction in yield than black gram. A highly significant positive correlation (level 0.01) of seed yield was obtained with leaf area, ΨL, PN, leaf chlorophyll, gs and SA, whereas SF was found to be poorly correlated with seed yield.

3.
Int J Pharm ; 421(1): 145-50, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-21945741

ABSTRACT

A controlled release formulation of captopril which was coated and fabricated into a donut shaped tablet formulation, was investigated in rabbit for pharmacokinetic and in vitro-in vivo correlation studies. Coated donut shaped tablets were prepared and in vitro release was studied in simulated gastric fluid at three different RPMs. New Zealand albino male rabbits have been used as animal model for in vivo study. A sensitive and simple HPLC method was developed for the determination of captopril content in rabbit plasma. In vitro release studies showed that release patterns followed zero order for around 4h. Single oral administration of coated donut shaped tablets in rabbit illustrated retained availability of captopril to the injected drug. Captopril content could pursue the same release pattern over the same time course in in vivo study. The in vivo-in vitro correlation coefficients obtained from point-to-point analysis were greater than 99% between concentrations at certain time points obtained from release study in simulated gastric fluid at different RPMs and HPLC analysis of rabbit's plasma. From the in vitro-in vivo correlation prediction it was evident that the coated donut shaped tablet is a good device for controlled delivery of captopril.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacokinetics , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacokinetics , Captopril/chemistry , Captopril/pharmacokinetics , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Animals , Antihypertensive Agents/administration & dosage , Biological Availability , Captopril/administration & dosage , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Gastric Juice/chemistry , Male , Rabbits , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...