Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 16(12): 7895-7914, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33201701

ABSTRACT

Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small-molecule lead optimization. Relative free-energy perturbation (FEP) approaches are one of the most widely utilized for this goal but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to set up, execute, and analyze multisite lambda dynamics (MSLD) calculations run on GPUs with CHARMM implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse data set of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free-energy landscape of any MSLD system is developed, which enhances sampling and allows for efficient estimation of free-energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than 100 ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150 ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multisite systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore the chemical space around a lead compound and thus are of utility in lead optimization.


Subject(s)
Automation , Molecular Dynamics Simulation , Thermodynamics , Ligands , Molecular Structure , Proteins/chemistry
2.
J Phys Chem B ; 124(30): 6520-6528, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32628482

ABSTRACT

When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit[7]uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pKa shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pKa shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pKa shifts.


Subject(s)
Protons , Hydrogen-Ion Concentration , Physical Phenomena , Static Electricity , Thermodynamics
3.
Nat Chem ; 12(4): 405-411, 2020 04.
Article in English | MEDLINE | ID: mdl-32123337

ABSTRACT

Three-stranded coiled coils are peptide structures constructed from amphipathic heptad repeats. Here we show that it is possible to form pure heterotrimeric three-stranded coiled coils by combining three distinct characteristics: (1) a cysteine sulfur layer for metal coordination, (2) a thiophilic, trigonal pyramidal metalloid (Pb(II)) that binds to these sulfurs and (3) an adjacent layer of reduced steric bulk generating a cavity where water can hydrogen bond to the cysteine sulfur atoms. Cysteine substitution in an a site yields Pb(II)A2B heterotrimers, while d sites provide pure Pb(II)C2D or Pb(II)CD2 scaffolds. Altering the metal from Pb(II) to Hg(II) or shifting the relative position of the sterically less demanding layer removes heterotrimer specificity. Because only two of the eight or ten hydrophobic layers are perturbed, catalytic sites can be introduced at other regions of the scaffold. A Zn(II)(histidine)3(H2O) centre can be incorporated at a remote location without perturbing the heterotrimer selectivity, suggesting a unique strategy to prepare dissymmetric catalytic sites within self-assembling de novo-designed proteins.


Subject(s)
Coordination Complexes/chemistry , Cysteine/chemistry , Lead/chemistry , Peptides/chemistry , Hydrogen Bonding , Protein Conformation, alpha-Helical , Protein Multimerization , Protein Structure, Quaternary , Water/chemistry
4.
Phys Chem Chem Phys ; 21(10): 5499-5509, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30785142

ABSTRACT

In this study, interactions of the catalytically active binuclear form of glycerophosphodiesterase (GpdQ) with four chemically diverse substrates, i.e. NPP (a phosphomonoester), BNPP and GPE (both phosphodiesters), and paraoxon (a phosphotriester) have been investigated using all-atom molecular dynamics (MD) simulations. The roles of metal ions and key amino acid residues, coordination flexibility, and dynamic transformations in all enzyme-substrate complexes have been elucidated. The roles of important first and second coordination shell residues in substrate binding and coordination flexibility of the enzyme suggested by simulations are supported by experimental data. The chemical nature of the substrate is found to influence the mode of binding, electrostatic surface potential, metal-metal distance, and reorganization of the active site. The experimentally proposed association between the substrate binding and coordination flexibility is analyzed using principal component analysis (PCA), movements of loops, and root-mean-square-fluctuations (RMSF) as parameters. The PCA of these substrates provides different energy basins, i.e. one, three, two and five for NPP, BNPP, GPE, and paraoxon, respectively. Additionally, the area of an irregular hexagon (268.3, 288.9, 350.8, and 362.5 Å2) formed by the residues on these loops illustrates their distinct motions. The substrate binding free energies of NPP, BNPP, and GPE are quite close (22.4-24.3 kcal mol-1), but paraoxon interacts with the smallest binding free energy (14.1 kcal mol-1). The metal binding energies in the presence of these substrates are substantially different, i.e. the lowest for NPP and the highest for paraoxon. These results thus provide deeper insight into the chemical promiscuity and coordination flexibility of this important enzyme.


Subject(s)
Phosphoric Diester Hydrolases , Catalytic Domain , Molecular Dynamics Simulation , Organophosphates/chemistry , Paraoxon/chemistry , Phosphoric Acids/chemistry , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Static Electricity , Substrate Specificity
5.
J Comput Chem ; 40(1): 51-61, 2019 01 05.
Article in English | MEDLINE | ID: mdl-30238478

ABSTRACT

In this study, mechanisms of hydrolysis of all four chemically diverse cleavage sites of human serum albumin (HSA) by [Zr(OH)(PW11 O39 )]4- (ZrK) have been investigated using the hybrid two-layer QM/MM (ONIOM) method. These reactions have been proposed to occur through the following two mechanisms: internal attack (IA) and water assisted (WA). In both mechanisms, the cleavage of the peptide bond in the Cys392-Glu393 site of HSA is predicted to occur in the rate-limiting step of the mechanism. With the barrier of 27.5 kcal/mol for the hydrolysis of this site, the IA mechanism is found to be energetically more favorable than the WA mechanism (barrier = 31.6 kcal/mol). The energetics for the IA mechanism are in line with the experimentally measured values for the cleavage of a wide range of dipeptides. These calculations also suggest an energetic preference (Cys392-Glu393, Ala257-Asp258, Lys313-Asp314, and Arg114-Leu115) for the hydrolysis of all four sites of HSA. © 2018 Wiley Periodicals, Inc.


Subject(s)
Quantum Theory , Serum Albumin, Human/chemistry , Tungsten Compounds/chemistry , Humans , Hydrolysis
6.
J Phys Chem B ; 122(29): 7219-7232, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29975530

ABSTRACT

In this study, a combined molecular docking (rigid and flexible) and all-atom molecular dynamics simulations technique have been employed to investigate interactions of 1:1 Zr-containing Keggin polyoxometalate (ZrK) with four chemically distinct cleavage sites [Arg114-Leu115 (site 1), Ala257-Asp258 (site 2), Lys313-Asp314 (site 3), and Cys392-Glu393 (site 4)] of human serum albumin (HSA). The ZrK-HSA complexations were analyzed using electrostatic potentials, the chemical nature of amino acid residues, binding free energies, and secondary structures as parameters. They suggested that ZrK binds in a rather distinct manner to different cleavage sites, and its association was dominated by hydrogen bonding, both direct and solvent mediated, and electrostatic interactions, as suggested experimentally. The computed binding free interaction energies (-57.5, -24.2, -50.8, and -91.2 kJ/mol for sites 1, 2, 3, and 4, respectively) predicted the existence of one major binding site (site 4) and three minor binding sites (site 1, site 2, and site 3). The strong exothermicity of the binding was also supported by isothermal calorimetry experiments. Additionally, the binding of ZrK did not alter the overall α-helical secondary structure of HSA, which was in line with experimental observation. Furthermore, hydrolysis of the peptide bonds of the substrate was found to retain its overall structure. These results have provided a deeper understanding of the complex ZrK interactions with proteins, and they will lead to the design of the next generation of catalytically active polyoxometalates with improved hydrolytic activities.


Subject(s)
Serum Albumin, Human/chemistry , Tungsten Compounds/chemistry , Binding Sites , Calorimetry , Humans , Hydrogen Bonding , Molecular Docking Simulation , Protein Binding , Protein Structure, Secondary , Quantum Theory , Serum Albumin, Human/metabolism , Static Electricity , Thermodynamics , Tungsten Compounds/metabolism
7.
J Phys Chem B ; 122(22): 5797-5808, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29723477

ABSTRACT

Glycerophosphodiesterase (GpdQ) is a binuclear metallophosphatase that catalyzes the hydrolytic cleavage of mono-, di-, and triphosphoester bonds of a wide range of critical molecules. Upon substrate binding, this enzyme undergoes a complex transformation from an inactive mononuclear form (Em, where the metal resides in the α site) to an active binuclear center (Eb-S, with metals bound to both the α and ß sites) through a mononuclear, substrate-bound intermediate state (Em-S). In this study, all-atom molecular dynamics simulations have been employed to investigate structures and dynamical transformations in this process using eight different variants, i.e., five wild-type and three mutant forms of the enzyme. Additionally, the effects of an actual substrate, bis-( para-nitrophenyl) phosphate (b pNPP), a metal-bridging nucleophilic hydroxyl, and specific first and second coordination shell residues have been investigated. The initial binding of the substrate to Em enhances the metal binding affinity of the α site and prepares the ß site for coordination of the second metal ion. These results are in agreement with stopped-flow fluorescence and calorimetry data. In Eb-S, the computed increase in the substrate and metal (both α and ß) binding energies is also in line with the experimental data. However, removal of the substrate from this complex is found to cause substantial reduction in binding energies of both α and ß metals. The role of the substrate in the creation and stabilization of the active site predicted in this study is supported by the kinetic measurements using both stopped-flow and nuclear magnetic resonance techniques. Importantly, residue Asn80, a ligand of the metal in the ß site, exhibits coordination flexibility by acting as a gate in the formation of Eb-S, in good agreement with mutagenesis and spectroscopic data.


Subject(s)
Molecular Dynamics Simulation , Nitrophenols/metabolism , Organophosphorus Compounds/metabolism , Phosphoric Diester Hydrolases/metabolism , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Metals/metabolism , Mutagenesis, Site-Directed , Nitrophenols/chemistry , Organophosphorus Compounds/chemistry , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Substrate Specificity
8.
J Chem Inf Model ; 57(5): 1079-1088, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28398040

ABSTRACT

In this DFT study, activities of 11 different N2O4, N2O3, and NO2 core containing Zr(IV) complexes, 4,13-diaza-18-crown-6 (I'N2O4), 1,4,10-trioxa-7,13-diazacyclopentadecane (I'N2O3), and 2-(2-methoxy)ethanol (I'NO2), respectively, and their analogues in peptide hydrolysis have been investigated. Based on the experimental information, these molecules were created by altering protonation states (singly protonated, doubly protonated, or doubly deprotonated) and number of their ligands. The energetics of the I'N2O4, and I'NO2 and their analogues predicted that both stepwise and concerted mechanisms occurred either with similar barriers, or the latter was more favorable than the former. They also showed that the doubly deprotonated form hydrolyzed the peptide bond with substantially lower barriers than the barriers for other protonation states. For NO2 core possessing complexes, Zr-(NO2)(OHH)(H2O/OH)n for n = 1-3, the hydroxyl group containing molecules were found to be more reactive than their water ligand possessing counterparts. The barriers for these complexes reduced with an increase in the coordination number (6-8) of the Zr(IV) ion. Among all 11 molecules, the NO2 core possessing and two hydroxyl group containing I'DNO2-2H complex was found to be the most reactive complex with a barrier of 28.9 kcal/mol. Furthermore, barriers of 27.5, 28.9, and 32.0 kcal/mol for hydrolysis of Gly-Glu (negative), Gly-Gly (neutral), and Gly-Lys (positive) substrates, respectively, by this complex were in agreement with experiments. The activities of these complexes were explained in terms of basicity of their ligand environment and nucleophilicity of the Zr(IV) center using metal-ligand distances, charge on the metal ion, and the metal-nucleophile distance as parameters. These results provide a deeper understanding of the functioning of these complexes and will help design Zr(IV)-based synthetic metallopeptidases.


Subject(s)
Peptides/metabolism , Silicates/chemistry , Zirconium/chemistry , Coordination Complexes/chemistry , Hydrolysis , Ligands , Molecular Docking Simulation , Molecular Structure , Peptides/chemistry
9.
Chemistry ; 23(11): 2706-2715, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28004889

ABSTRACT

To elucidate the involvement of individual and inter-related pathological factors [i.e., amyloid-ß (Aß), metals, and oxidative stress] in the pathogenesis of Alzheimer's disease (AD), chemical tools have been developed. Characteristics required for such tool construction, however, have not been clearly identified; thus, the optimization of available tools or new design has been limited. Here, key structural properties and mechanisms that can determine tools' regulatory reactivities with multiple pathogenic features found in AD are reported. A series of small molecules was built up through rational structural selection and variations onto the framework of a tool useful for in vitro and in vivo metal-Aß investigation. Variations include: (i) location and number of an Aß interacting moiety; (ii) metal binding site; and (iii) denticity and structural flexibility. Detailed biochemical, biophysical, and computational studies were able to provide a foundation of how to originate molecular formulas to devise chemical tools capable of controlling the reactivities of various pathological components through distinct mechanisms. Overall, this multidisciplinary investigation illustrates a structure-mechanism-based strategy of tool invention for such a complicated brain disease.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Alzheimer Disease/metabolism , Amino Acid Sequence , Amyloid beta-Peptides/metabolism , Cell Line , Cell Survival/drug effects , Chlorides/chemistry , Copper/chemistry , Humans , Metals/chemistry , Metals/metabolism , Oxidative Stress , Protein Binding , Protein Structure, Tertiary , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry , Zinc Compounds/chemistry
10.
Phys Chem Chem Phys ; 18(36): 24790-24801, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711373

ABSTRACT

Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp-] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.


Subject(s)
Peptides/chemistry , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Animals , Biocatalysis , Catalytic Domain , Cattle , Hydrolysis , Insulysin/chemistry , Insulysin/metabolism , Leucyl Aminopeptidase/chemistry , Leucyl Aminopeptidase/metabolism , Ligands , Peptides/metabolism , Protein Structure, Tertiary , Thermodynamics , Zinc/chemistry
11.
J Phys Chem Lett ; 7(14): 2758-64, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27387853

ABSTRACT

In this combined experimental (deep ultraviolet resonance Raman (DUVRR) spectroscopy and atomic force microscopy (AFM)) and theoretical (molecular dynamics (MD) simulations and stress-strain (SS)) study, the structural and mechanical properties of amyloid beta (Aß40) fibrils have been investigated. The DUVRR spectroscopy and AFM experiments confirmed the formation of linear, unbranched and ß-sheet rich fibrils. The fibrils (Aß40)n, formed using n monomers, were equilibrated using all-atom MD simulations. The structural properties such as ß-sheet character, twist, interstrand distance, and periodicity of these fibrils were found to be in agreement with experimental measurements. Furthermore, Young's modulus (Y) = 4.2 GPa computed using SS calculations was supported by measured values of 1.79 ± 0.41 and 3.2 ± 0.8 GPa provided by two separate AFM experiments. These results revealed size dependence of structural and material properties of amyloid fibrils and show the utility of such combined experimental and theoretical studies in the design of precisely engineered biomaterials.

12.
Chemphyschem ; 17(16): 2558-66, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27146076

ABSTRACT

In this study, structural and mechanical properties of a series of models of Aß42 (one- and two-fold) and Aß40 (two- and three-fold) fibrils have been computed by using all-atom molecular dynamics simulations. Based on calculations of the twist angle (θ) and periodicity (v=360d/θ), oligomers formed by 20, 11, and 13 monomers were found to be the smallest realistic models of three-fold Aß40 , one-fold Aß42 , and two-fold Aß42 fibrils, respectively. Our results predict that the Aß40 fibrils initially exist in two staggered conformations [STAG(+2) and STAG(+1)] and then undergo a [STAG(+2)→STAG(+1)] transformation in a size-dependent manner. The length of the loop region consisting of the residues 23-29 shrinks with the elongation of both Aß40 and Aß42 fibrils. A comparison of the computed potential energy suggests that a two-fold Aß40 aggregate is more stable than its three-fold counterpart, and that Aß42 oligomers can exist only in one-fold conformation for aggregates of more than 11 monomers in length. The computed Young's modulus and yield strengths of 50 GPa and 0.95 GPa, respectively, show that these aggregates possess excellent material properties.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation
13.
Biochimie ; 113: 143-55, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25891844

ABSTRACT

The emergence of antibiotic resistant strains of bacteria has resulted in the need to develop more potent antimicrobials that target microorganisms in a novel manner. Antimicrobial Peptides (AMPs) show great potential for drug development because of their broad activity and unique mechanism of action. Several AMPs contain an Amino Terminal Copper and Nickel (ATCUN) binding motif; however, its function has not yet been determined. We have previously demonstrated that the activity of a truncated version of Buforin II (sh-Buforin, RAGLQFPVGRVHRLLRK-NH2) increases by the addition of an ATCUN motif. We now focus our current studies on understanding the effect of: 1) a positively charged ATCUN sequence, and 2) l-to-d amino acid substitution on the hybrid peptides. We identified that the addition of a positively charged ATCUN motif increases the affinity of the ATCUN-AMP for DNA but does not always result in an enhanced antimicrobial activity over a neutral ATCUN motif. The all-d peptides exhibited up to a 32-fold increase in antimicrobial activity compared to the all-l peptides. The larger activity of the all-d peptides is the result of a larger DNA cleavage activity and higher stability towards proteolysis. Cytotoxicity assays determined that, at their MIC, these peptides caused less than 8% hemolysis and, at 128 µM, no toxicity to HeLa and HEK293 cell lines. These results indicate that the ATCUN-AMP hybrids are an attractive alternative for treating infectious diseases and provide key insights into the role of the ATCUN motif in naturally-occurring AMPs.


Subject(s)
Antimicrobial Cationic Peptides , Escherichia coli/growth & development , Proteins , Amino Acid Motifs , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , HEK293 Cells , HeLa Cells , Humans , Proteins/chemical synthesis , Proteins/chemistry , Proteins/pharmacology
14.
Acc Chem Res ; 48(2): 192-200, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25607542

ABSTRACT

CONSPECTUS: The selective hydrolysis of a peptide or amide bond (-(O═)C-NH-) by a synthetic metallopeptidase is required in a wide range of biological, biotechnological, and industrial applications. In nature, highly specialized enzymes known as proteases and peptidases are used to accomplish this daunting task. Currently, many peptide bond cleaving enzymes and synthetic reagents have been utilized to achieve efficient peptide hydrolysis. However, they possess some serious limitations. To overcome these inadequacies, a variety of metal complexes have been developed that mimic the activities of natural enzymes (metallopeptidases). However, in comparison to metallopeptidases, the hydrolytic reactions facilitated by their existing synthetic analogues are considerably slower and occur with lower catalytic turnover. This could be due to the following reasons: (1) they lack chemical properties of amino acid residues found within enzyme active sites; (2) they contain a higher metal coordination number compared with naturally occurring enzymes; and (3) they do not have access to second coordination shell residues that provide substantial rate enhancements in enzymes. Additionally, the critical structural and mechanistic information required for the development of the next generation of synthetic metallopeptidases cannot be readily obtained through existing experimental techniques. This is because most experimental techniques cannot follow the individual chemical steps in the catalytic cycle due to the fast rate of enzymes. They are also limited by the fact that the diamagnetic d(10) Zn(II) center is silent to electronic, electron spin resonance, and (67)Zn NMR spectroscopies. Therefore, we have employed molecular dynamics (MD), quantum mechanics (QM), and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques to derive this information. In particular, the role of the metal ions, ligands, and microenvironment in the functioning of mono- and binuclear metal center containing enzymes such as insulin degrading enzyme (IDE) and bovine lens leucine aminopeptidase (BILAP), respectively, and their synthetic analogues have been investigated. Our results suggested that in the functioning of IDE, the chemical nature of the peptide bond played a role in the energetics of the reaction and the peptide bond cleavage occurred in the rate-limiting step of the mechanism. In the cocatalytic mechanism used by BILAP, one metal center polarized the scissile peptide bond through the formation of a bond between the metal and the carbonyl group of the substrate, while the second metal center delivered the hydroxyl nucleophile. The Zn(N3) [Zn(His, His, His)] core of matrix metalloproteinase was better than the Zn(N2O) [Zn(His, His, Glu)] core of IDE for peptide hydrolysis. Due to the synergistic interaction between the two metal centers, the binuclear metal center containing Pd2(µ-OH)([18]aneN6)](4+) complex was found to be ∼100 times faster than the mononuclear [Pd(H2O)4](2+) complex. A successful small-molecule synthetic analogue of a mononuclear metallopeptidase must contain a metal with a strong Lewis acidity capable of reducing the pKa of its water ligand to less than 7. Ideally, the metal center should include three ligands with low basicity. The steric effects or strain exerted by the microenvironment could be used to weaken the metal-ligand interactions and increase the activity of the metallopeptidase.


Subject(s)
Biomimetic Materials/chemistry , Metalloproteases/metabolism , Models, Molecular , Animals , Biomimetic Materials/chemical synthesis , Catalytic Domain , Humans , Hydrolysis , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...