Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 72(11): 2054-2068, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26940902

ABSTRACT

BACKGROUND: Strigolactones play an important role in the rhizosphere as signalling molecules stimulating the seed germination of parasitic weed seeds and hyphal branching of arbuscular micorrhiza, and also act as hormones in plant roots and shoots. Strigolactone derivatives, e.g. strigolactams, could be used as suicidal germination inducers in the absence of a host crop for the decontamination of land infested with parasitic weed seeds. RESULTS: We report the stereoselective synthesis of novel strigolactams, together with some of their critical physicochemical properties, such as water solubility, hydrolytic stability, as well as their short soil persistence. In addition, we show that such strigolactams are potent germination stimulants of O. cumana parasitic weed seeds and do not affect the seed germination and the root growth of sunflower. CONCLUSIONS: The novel strigolactam derivatives described here compare favourably with the corresponding GR-28 strigolactones in terms of biological activity and physicochemical properties. However, we believe strigolactone and strigolactam derivatives require further structural optimisation to improve their soil persistence to demonstrate a potential for agronomical applications. © 2016 Society of Chemical Industry.


Subject(s)
Germination/drug effects , Helianthus/drug effects , Lactams/pharmacology , Orobanche/drug effects , Helianthus/growth & development , Lactams/chemical synthesis , Lactams/chemistry , Lactones/chemistry , Orobanche/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Seeds/drug effects , Seeds/growth & development
2.
Pest Manag Sci ; 70(8): 1249-53, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24227679

ABSTRACT

BACKGROUND: The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. RESULTS: A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. CONCLUSION: The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species.


Subject(s)
Aphids/genetics , Insecticide Resistance/genetics , Sodium Channels/genetics , Amino Acid Substitution/genetics , Animals , Aphids/drug effects , Base Sequence , Biological Assay , Edible Grain , England , Insecticides/pharmacology , Molecular Sequence Data , Nitriles/pharmacology , Pyrethrins/pharmacology
3.
Pest Manag Sci ; 69(5): 607-19, 2013 May.
Article in English | MEDLINE | ID: mdl-23112103

ABSTRACT

BACKGROUND: The precise mode of action of sulfoxaflor, a new nicotinic acetylcholine receptor-modulating insecticide, is unclear. A detailed understanding of the mode of action, especially in relation to the neonicotinoids, is essential for recommending effective pest management practices. RESULTS: Radiolabel binding experiments using a tritiated analogue of sulfoxaflor ([(3) H]-methyl-SFX) performed on membranes from Myzus persicae demonstrate that sulfoxaflor interacts specifically with the high-affinity imidacloprid binding site present in a subpopulation of the total nAChR pool. In competition studies, imidacloprid-like neonicotinoids displace [(3) H]-methyl-SFX at pM concentrations. The effects of sulfoxaflor on the exposed aphid nervous system in situ are analogous to those of imidacloprid and nitenpyram, and finally the high-affinity sulfoxaflor binding site is absent in a Myzus persicae strain (clone FRC) possessing a single amino acid point mutation (R81T) in the ß-nAChR, a region critical for neonicotinoid interaction. CONCLUSION: The nicotinic acetylcholine receptor pharmacological profile of sulfoxaflor in aphids is consistent with that of imidacloprid. Additionally, the insecticidal activity of sulfoxaflor and the current commercialised neonicotinoids is affected by the point mutation in FRC Myzus persicae. Therefore, it is suggested that sulfoxalfor be considered a neonicotinoid, and that this be taken into account when recommending insecticide rotation partnering for effective resistance management programmes.


Subject(s)
Insecticides/toxicity , Pyridines/toxicity , Receptors, Nicotinic/chemistry , Sulfur Compounds/toxicity , Animals , Aphids , Binding, Competitive , Insecticide Resistance , Pyridines/chemical synthesis , Sulfur Compounds/chemical synthesis , Tritium
4.
Pest Manag Sci ; 68(4): 634-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22052736

ABSTRACT

BACKGROUND: The neonicotinoid class of insecticides is a key component of pest management strategies used by stone fruit producers in Europe. Neonicotinoids are currently one of the most important tools for control of the peach-potato aphid (Myzus persicae). Overreliance on neonicotinoids has led to the development of resistance through a combination of metabolic and target-site resistance mechanisms in individual aphids. A resistance monitoring project was conducted by Syngenta in 2010 to determine the resistance status of M. persicae populations collected from France and Spain, and to determine the frequency of the target-site mutation in those populations. RESULTS: Resistance monitoring suggests that resistance to neonicotinoids is relatively widespread in populations of M. persicae collected from peach orchards in the Languedoc-Roussillon, Provence-Alpes-Cote d'Azur and Rhone-Alpes regions of France, and resistance can be associated with the frequency of the target-site mutation (R81T). The R81T mutation in its heterozygous form is also present in Spanish populations and is associated with neonicotinoid resistance. CONCLUSION: The widespread nature of neonicotinoid resistance in southern France and the potential for resistance development in northern Spain highlight the need for a coordinated management strategy employing insecticides with different modes of action to reduce the selection pressure with neonicotinoids.


Subject(s)
Aphids/drug effects , Insecticide Resistance , Insecticides/pharmacology , Plant Diseases/parasitology , Prunus/parasitology , Animals , Aphids/genetics , Aphids/physiology , France , Insect Proteins/genetics , Insect Proteins/metabolism , Mutation , Prunus/growth & development , Spain
5.
BMC Neurosci ; 12: 51, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21627790

ABSTRACT

BACKGROUND: Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. RESULTS: Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid) to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR). Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpß1) genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR ß1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T). CONCLUSION: Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also provides further validation of exisiting models of neonicotinoid binding and selectivity for insect nAChRs.


Subject(s)
Aphids/genetics , Cholinergic Agents/pharmacology , Imidazoles/pharmacology , Insecticides/pharmacology , Nitro Compounds/pharmacology , Receptors, Nicotinic/genetics , Animals , Aphids/metabolism , Insecticide Resistance/genetics , Mutation , Neonicotinoids , Receptors, Nicotinic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...