Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-516398

ABSTRACT

COVID-19 placentitis, a rare complication of maternal SARS-CoV-2 infection, only shows detectable virus in the placenta of a subset of cases. We provide a deep multi-omic spatial characterisation of placentitis from obstetrically complicated maternal COVID-19 infection. We found that SARS-CoV-2 infected placentas have a distinct transcriptional and immunopathological signature. This signature overlaps with virus-negative cases supporting a common viral aetiology. An inverse correlation between viral load and disease duration suggests viral clearance over time. Quantitative spatial analyses revealed a unique microenvironment surrounding virus-infected trophoblasts characterised by PDL1-expressing macrophages, T-cell exclusion, and interferon blunting. In contrast to uninfected mothers, ACE2 was localised to the maternal side of the placental trophoblast layer of almost all mothers with placental SARS-CoV-2 infection, which may explain variable susceptibility to placental infection. Our results demonstrate a pivotal role for direct placental SARS-CoV-2 infection in driving the unique immunopathology of COVID-19 placentitis. Graphical Abstract O_FIG_DISPLAY_L [Figure 1] M_FIG_DISPLAY C_FIG_DISPLAY

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21255890

ABSTRACT

ObjectiveThrombotic complications and vasculopathy have been extensively associated with severe COVID-19 infection, however the mechanisms by which endotheliitis is induced remain poorly understood. Here we investigate vascular permeability in the context of SARS-CoV-2-mediated endotheliitis in patient samples and a vascular organoid model. Methods and ResultsWe report the presence of the Spike glycoprotein in pericytes associated with pericyte activation and increased endothelial permeability in post-mortem COVID-19 lung autopsies. A pronounced decrease in the expression of the adhesion molecule VE-cadherin is observed in patients with thrombotic complications. Interestingly, fibrin-rich thrombi did not contain platelets, did not colocalize with tissue factor and have heterogenous levels of Von Willebrand factor, suggesting a biomarker-guided therapy might be required to target thrombosis in severe patients. Using a 3D vascular organoid model, we observe that ACE2 is primarily expressed in pericytes adjacent to vascular networks, consistent with patient data, indicating a preferential uptake of the S glycoprotein by these cells. Exposure of vascular organoids to SARS-CoV-2 or its antigens, recombinant trimeric Spike glycoprotein and Nucleocapsid protein, reduced endothelial cell and pericyte viability as well as CD144 expression with no additive effect upon endothelial activation via IL-1{beta}. ConclusionsOur data suggest that pericyte uptake of SARS-CoV-2 or Spike glycoprotein contributes to vasculopathy by altering endothelial permeability increasing the risk of thrombotic complications.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20164848

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. MIS-C has overlapping clinical features with Kawasaki Disease (KD), a rare childhood vasculitis. MIS-C therapy is largely based on KD treatment protocols but whether these diseases share underpinning immunological perturbations is unknown. We performed deep immune profiling on blood samples from healthy children and patients with MIS-C or KD. Acute MIS-C patients had highly activated neutrophils, classical monocytes and memory CD8+ T-cells; increased frequencies of B-cell plasmablasts and CD27-IgD-double-negative B-cells; and increased levels of pro-inflammatory (IL6, IL18, IP10, MCP1) but also anti-inflammatory (IL-10, IL1-RA, sTNFR1, sTNFR2) cytokines. Increased neutrophil count correlated with inflammation,cardiac dysfunction and disease severity. Two days after intravenous immunoglobulin (IVIG) treatment, MIS-C patients had increased CD163 expression on monocytes, expansion of a novel population of immature neutrophils, and decreased levels of pro- and anti-inflammatory cytokines in the blood accompanied by a transient increase in arginase in some patients. Our data show MIS-C and KD share substantial immunopathology and identify potential new mechanisms of action for IVIG, a widely used anti-inflammatory drug used to treat MIS-C, KD and other inflammatory diseases.

SELECTION OF CITATIONS
SEARCH DETAIL