Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 24(2): e2300289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37717210

ABSTRACT

The treatment of burn wounds remains a clinical challenge due to the need for repeated dressings changes. Therefore, the development of a dressing system that can be atraumatically removed from the wound bed can be considered a breakthrough and improve treatment times. In this work, the development of an injectable, fast-gelling hydrogel is proposed that can change its mechanical properties when exposed to visible light. The hydrogels are prepared by a "click" amino-yne reaction between poly(ethylene glycol) (PEG) functionalized with propiolic acid and the amino groups of poly(ethyleneimine) (PEI). The hydrogels exhibit a fast gelation time, which can be adjusted by changing the weight percentage and molecular weight of the precursors. They also exhibit good swelling ability and adhesion to living tissues. More importantly, their mechanical properties changed upon irradiation with green light. This loss of properties is achieved by a 1 O2 -mediated mechanism, as confirmed by the degradation of the ß-aminoacrylate linker. Moreover, the in vitro cell compatibility results of the hydrogels and their degradation products show good cytocompatibility. Therefore, it is believed that these hydrogels can be considered as materials with great potential for an innovative strategy for the treatment of burn wounds.


Subject(s)
Burns , Polyethyleneimine , Humans , Biocompatible Materials , Hydrogels/pharmacology , Polyethylene Glycols , Light , Burns/therapy
2.
Mater Sci Eng C Mater Biol Appl ; 131: 112520, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857299

ABSTRACT

Biocompatible hydrogels are exciting platforms that have stood out in recent years for their outstanding potential for biomedical applications. For these applications, the ability of the material to respond to an external stimulus can be a relevant addition. This responsiveness allows the material to modify its physical properties in such a way that it can deliver molecules that support the healing process or allow easy removal of the films from the tissue. Among the polymers used to produce these systems, polyurethane (PU) and polyurethane-urea (PUU) are some of the most cited examples. In this work, a new hydrogel-sensitive PUU film is proposed. These films are prepared from polyethylene glycol (PEG) and contain a ROS-responsive telechelic ß-aminoacrylate bond. The hydrogel films showed interesting mechanical and thermal properties, good water uptake and low cytotoxicity, which makes them suitable for biomedical applications. More importantly, the hydrogel films exhibited a light-degradable profile through an innovative ROS-mediated cleavage process, as indicated by the loss of mechanical properties.


Subject(s)
Hydrogels , Urea , Methylgalactosides , Polyethylene Glycols
3.
Chemistry ; 20(45): 14834-45, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25236257

ABSTRACT

We report the synthesis of a cyclen-based ligand (4,10-bis[(1-oxidopyridin-2-yl)methyl]-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid=L1) containing two acetate and two 2-methylpyridine N-oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the Gd(III) complex may be sufficient for biological applications. A detailed structural study of the complexes by (1) H NMR spectroscopy and DFT calculations indicates that they adopt an anti-Δ(λλλλ) conformation in aqueous solution, that is, an anti-square antiprismatic (anti-SAP) isomeric form, as demonstrated by analysis of the (1) H NMR paramagnetic shifts induced by Yb(III) . The water-exchange rate of the Gd(III) complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$=6.7×10(6)  s(-1) , about a quarter of that for the mono-oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). The 2-methylpyridine N-oxide chromophores can be used to sensitize a wide range of Ln(III) ions emitting in both the visible (Eu(III) and Tb(III) ) and NIR (Pr(III) , Nd(III) , Ho(III) , Yb(III) ) spectral regions. The emission quantum yield determined for the Yb(III) complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$=7.3(1)×10(-3) ) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.

SELECTION OF CITATIONS
SEARCH DETAIL
...