Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
PLoS One ; 12(9): e0184192, 2017.
Article in English | MEDLINE | ID: mdl-28898250

ABSTRACT

Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites' tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis.


Subject(s)
Leupeptins/pharmacology , Proteasome Inhibitors/pharmacology , Schistosoma mansoni/drug effects , Animals , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Reproducibility of Results , Schistosoma mansoni/genetics , Schistosoma mansoni/ultrastructure , Transcriptome
2.
PLoS One ; 12(9): e0184192, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17788

ABSTRACT

Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value = 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis.

3.
Rev. bras. farmacogn ; 26(3): 334-341, May-June 2016. tab, graf
Article in English | LILACS | ID: lil-784287

ABSTRACT

Abstract Schistosomiasis, a chronic disease that affects million people worldwide, is caused by trematode flukes of the genus Schistosoma. The lack of an anti-schistosomiasis vaccine and massive monotherapy with praziquantel reinforces the need for search and development of new therapeutic drugs. Recently, we demonstrated that the essential oil of Piper cubeba L., Piperaceae, and their derivative dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin, presents in vitro and in vivo activities against Schistosoma mansoni. Here, we identified changes in the protein expression after exposure to dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin. We applied two-dimensional gel electrophoresis (2-DE) to S. mansoni soluble protein extracts and observed at least 38 spots to be affected by dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin. We further identified 25 differentially expressed proteins by mass spectrometry. Enrichment for biological processes and predictive analyses of protein-protein interactions suggest that dibenzylbutyrolactolic (-)-6,6'-dinitrohinokinin targets proteins involved mainly in metabolic processes, especially carbohydrate metabolism. In summary, this study provides an interesting approach to understand the anti-parasitic activity of semi-synthetic (-)-6,6'-dinitrohinokinin a derivative compound from lignan and for the development of new therapy strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...