Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 44(12): 6333-6345, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36547093

ABSTRACT

Anesthesia with propofol is frequently associated with hypotension. The TRPA1 gene contributes to the vasodilator effect of propofol. Hypotension is crucial for anesthesiologists because it is deleterious in the perioperative period. We tested whether the TRPA1 gene polymorphisms or haplotypes interfere with the hypotensive responses to propofol. PCR-determined genotypes and haplotype frequencies were estimated. Nitrite, nitrates, and NOx levels were measured. Propofol induced a more expressive lowering of the blood pressure (BP) without changing nitrite or nitrate levels in patients carrying CG+GG genotypes for the rs16937976 TRPA1 polymorphism and AG+AA genotypes for the rs13218757 TRPA1 polymorphism. The CGA haplotype presented the most remarkable drop in BP. Heart rate values were not impacted. The present exploratory analysis suggests that TRPA1 genotypes and haplotypes influence the hypotensive responses to propofol. The mechanisms involved are probably other than those related to NO bioavailability. With better genetic knowledge, planning anesthesia with fewer side effects may be possible.

2.
Basic Clin Pharmacol Toxicol ; 130(2): 277-287, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34825477

ABSTRACT

Anaesthesia with propofol is frequently associated with hypotension, which is at least partially attributable to increased nitric oxide (NO) formation derived from the activation of protein kinase C (PKC)/endothelial NO synthase (NOS3) axis. In this cross-sectional study, we tested whether PRKCA (which encodes PKCα) polymorphisms, or haplotypes, and interactions among PRKCA and NOS3 polymorphisms affect the hypotensive responses to propofol. We collected venous blood samples from 164 patients before and 10 min after propofol administration. Genotypes were determined by PCR and haplotype frequencies were estimated. Nitrite and NOx (nitrites+nitrates) levels were measured by using an ozone-based chemiluminescence assay and the Griess reaction, respectively. We used multifactor dimensionality reduction to test interactions among PRKCA and NOS3 polymorphisms. Propofol promoted enhanced blood pressure-lowering effects and increased nitrite levels in subjects carrying GA + AA genotypes for the rs16960228 and TC + CC genotypes for the rs1010544 PRKCA polymorphisms, and the CCG haplotype. Moreover, genotypes for the rs1010544 PRKCA polymorphism were associated with higher or lower blood pressure decreases in response to propofol depending on the genotypes for the rs2070744 NOS3 polymorphism. Our findings suggest that PRKCA genotypes and haplotypes impact the hypotensive responses to propofol, possibly by modifying NO bioavailability, and that PRKCA-NOS3 interactions modify the blood pressure-lowering effects of propofol.


Subject(s)
Hypotension/chemically induced , Nitric Oxide Synthase Type III/genetics , Propofol/adverse effects , Protein Kinase C-alpha/genetics , Adult , Aged , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/adverse effects , Cross-Sectional Studies , Female , Genotype , Haplotypes , Humans , Hypotension/genetics , Male , Middle Aged , Nitric Oxide/metabolism , Propofol/administration & dosage
3.
BMC Anesthesiol ; 21(1): 91, 2021 03 27.
Article in English | MEDLINE | ID: mdl-33773580

ABSTRACT

BACKGROUND: Lidocaine and magnesium sulfate have become increasingly utilized in general anesthesia. The present study evaluated the effects of these drugs, isolated or combined, on hemodynamic parameters as well as on the cisatracurium-induced neuromuscular blockade (NMB). METHODS: At a university hospital, 64 patients, ASA physical status I and II, undergoing elective surgery with similar pain stimuli were randomly assigned to four groups. Patients received a bolus of lidocaine and magnesium sulfate before the tracheal intubation and a continuous infusion during the operation as follows: 3 mg.kg- 1 and 3 mg.kg- 1.h- 1 (lidocaine - L group), 40 mg.kg- 1 and 20 mg.kg- 1.h- 1 (magnesium - M group), equal doses of both drugs (magnesium plus lidocaine - ML group), and an equivalent volume of isotonic solution (control - C group). Hemodynamic parameters and neuromuscular blockade features were continuously monitored until spontaneous recovery of the train of four (TOF) ratio (TOFR > 0.9). RESULTS: The magnesium sulfate significantly prolonged all NMB recovery features, without changing the speed of onset of cisatracurium. The addition of lidocaine to Magnesium Sulfate did not influence the cisatracurium neuromuscular blockade. A similar finding was observed when this drug was used alone, with a significantly smaller fluctuation of mean arterial pressure (MAP) and heart rate (HR) measures during anesthesia induction and maintenance. Interestingly, the percentage of patients who achieved a TOFR of 90% without reaching T1-95% was higher in the M and ML groups. Than in the C and L groups. There were no adverse events reported in this study. CONCLUSION: Intravenous lidocaine plays a significant role in the hemodynamic stability of patients under general anesthesia without exerting any additional impact on the NMB, even combined with magnesium sulfate. Aside from prolonging all NMB recovery characteristics without altering the onset speed, magnesium sulfate enhances the TOF recovery rate without T1 recovery. Our findings may aid clinical decisions involving the use of these drugs by encouraging their association in multimodal anesthesia or other therapeutic purposes. TRIAL REGISTRATION: NCT02483611 (registration date: 06-29-2015).


Subject(s)
Anesthesia, General , Lidocaine/administration & dosage , Magnesium Sulfate/administration & dosage , Adult , Analgesics/administration & dosage , Anesthetics, Local/administration & dosage , Arterial Pressure/drug effects , Atracurium/administration & dosage , Atracurium/analogs & derivatives , Double-Blind Method , Drug Combinations , Female , Heart Rate/drug effects , Humans , Infusions, Intravenous , Male , Neuromuscular Blockade , Neuromuscular Blocking Agents/administration & dosage , Prospective Studies
4.
Eur J Clin Pharmacol ; 77(6): 869-877, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33410970

ABSTRACT

PURPOSE: Propofol anesthesia is usually accompanied by hypotensive responses, which are at least in part mediated by nitric oxide (NO). Arginase I (ARG1) and arginase II (ARG2) compete with NO synthases for their common substrate L-arginine, therefore influencing the NO formation. We examined here whether ARG1 and ARG2 genotypes and haplotypes affect the changes in blood pressure and NO bioavailability in response to propofol. METHODS: Venous blood samples were collected from 167 patients at baseline and after 10 min of anesthesia with propofol. Genotypes were determined by polymerase chain reaction. Nitrite concentrations were measured by using an ozone-based chemiluminescence assay, while NOx (nitrites + nitrates) levels were determined by using the Griess reaction. RESULTS: We found that patients carrying the AG + GG genotypes for the rs3742879 polymorphism in ARG2 gene and the ARG2 GC haplotype show lower increases in nitrite levels and lower decreases in blood pressure after propofol anesthesia. On the other hand, subjects carrying the variant genotypes for the rs10483801 polymorphism in ARG2 gene show more intense decreases in blood pressure (CA genotype) and/or higher increases in nitrite levels (CA and AA genotypes) in response to propofol. CONCLUSION: Our results suggest that ARG2 variants affect the hypotensive responses to propofol, possibly by modifying NO bioavailability. TRIAL REGISTRATION: NCT02442232.


Subject(s)
Anesthetics, Intravenous/adverse effects , Arginase/genetics , Hypotension/chemically induced , Nitric Oxide/metabolism , Propofol/adverse effects , Adult , Aged , Anesthetics, Intravenous/pharmacokinetics , Female , Genotype , Haplotypes , Humans , Male , Middle Aged , Nitrates/blood , Nitrites/blood , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Propofol/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...