Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0289018, 2023.
Article in English | MEDLINE | ID: mdl-37922287

ABSTRACT

Our working hypothesis was that magnesium (Mg) supplementation modulates plant performance under low water availability and improves drought tolerance in soybean genotypes. Plants of Bônus 8579, M8808 and TMG1180 genotypes were grown under field conditions and subjected to three water stress treatments (control, moderate and severe stress) and three Mg levels [0.9 (low), 1.3 (adequate) and 1.7 cmolc dm-³ (supplementation)]. After 28 days of drought imposition, the growth parameters, osmotic potential, relative water content, leaf succulence, Mg content and photosynthetic pigments were assessed. In general, drought drastically decreased the growth in all genotypes, and the reductions were intensified from moderate to severe stress. Under adequate Mg supply, TMG1180 was the most drought-tolerant genotype among the soybean plants, but Mg supplementation did not improve its tolerance. Conversely, although the M8808 genotype displayed inexpressive responses to drought under adequate Mg, the Mg-supplemented plants were found to have surprisingly better growth performance under stress compared to Bônus 8579 and TMG1180, irrespective of drought regime. The improved growth of high Mg-treated M8808-stressed plants correlated with low osmotic potential and increased relative water content, as well as shoot Mg accumulation, resulting in increased photosynthetic pigments and culminating in the highest drought tolerance. The results clearly indicate that Mg supplementation is a potential tool for alleviating water stress in M8808 soybean plants. Our findings suggest that the enhanced Mg-induced plant acclimation resulted from increased water content in plant tissues and strategic regulation of Mg content and photosynthetic pigments.


Subject(s)
Glycine max , Magnesium , Dehydration , Droughts , Dietary Supplements
2.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687379

ABSTRACT

Identifying cultivars of leguminous crops exhibiting drought resistance has become crucial in addressing water scarcity issues. This investigative study aimed to select soybean and cowpea cultivars with enhanced potential to grow under water restriction during the vegetative stage. Two parallel trials were conducted using seven soybean (AS3810IPRO, M8644IPRO, TMG1180RR, NS 8338IPRO, BMX81I81IPRO, M8808IPRO, and BÔNUS8579IPRO) and cowpea cultivars (Aracê, Novaera, Pajeú, Pitiúba, Tumucumaque, TVU, and Xique-xique) under four water levels (75, 60, 45, and 30% field capacity-FC) over 21 days. Growth, water content, membrane damage, photosynthetic pigments, organic compounds, and proline levels were analyzed. Drought stress significantly impacted the growth of both crops, particularly at 45 and 30% FC for soybean and 60 and 45% FC for cowpea plants. The BÔNUS8579IPRO and TMG1180RR soybean cultivars demonstrated the highest performance under drought, a response attributed to increased amino acids and proline contents, which likely help to mitigate membrane damage. For cowpea, the superior performance of the drought-stressed Xique-xique cultivar was associated with the maintenance of water content and elevated photosynthetic pigments, which contributed to the preservation of the photosynthetic efficiency and carbohydrate levels. Our findings clearly indicate promising leguminous cultivars that grow under water restriction, serving as viable alternatives for cultivating in water-limited environments.

3.
Plant Physiol Biochem ; 170: 192-205, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34902782

ABSTRACT

Environmental stresses disturb the endoplasmic reticulum (ER) protein folding. However, primary metabolic responses induced by ER stress remain unclear. Thus, we investigated the morphophysiological and metabolomic changes under ER stress, induced by dithiothreitol (DTT) and tunicamycin (TM) treatments in sorghum seedlings from 24 to 96 h. The ER stress caused lipid peroxidation and increased the expression of SbBiP1, SbPDI, and SbIRE1. The development impairment was more pronounced in roots than in shoots as distinct metabolomic profiles were observed. DTT decreased root length, lateral roots, and root hair, while TM decreased mainly the root length. At 24 h, under ER stresses, the glutamic acid and o-acetyl-serine were biomarkers in the shoots. While homoserine, pyroglutamic acid, and phosphoric acid were candidates for roots. At the latest time (96 h), kestose and galactinol were key metabolites for shoots under DTT and TM, respectively. In roots, palatinose, trehalose, and alanine were common markers for DTT and TM late exposure. The accumulation of sugars such as arabinose and kestose occurred mainly in roots in the presence of DTT at a later time, which also inhibited glycolysis and the tricarboxylic acid cycle (TCA). Amino acid metabolism was induced, which also contributed TCA components decreasing, such as succinate in shoots and citrate in roots. Thus, our study may provide new insights into primary metabolism modulated by ER stress and seedling development.


Subject(s)
Endoplasmic Reticulum Stress , Sorghum , Dithiothreitol , Seedlings , Tunicamycin
4.
Plant Mol Biol ; 106(1-2): 33-48, 2021 May.
Article in English | MEDLINE | ID: mdl-33594577

ABSTRACT

KEY MESSAGE: H2O2 priming reprograms essential proteins' expression to help plants survive, promoting responsive and unresponsive proteins adjustment to salt stress. ABSTACRT: Priming is a powerful strategy to enhance abiotic stress tolerance in plants. Despite this, there is scarce information about the mechanisms induced by H2O2 priming for salt stress tolerance, particularly on proteome modulation. Improving maize cultivation in areas subjected to salinity is imperative for the local economy and food security. Thereby, this study aimed to investigate physiological changes linked with post-translational protein events induced by foliar H2O2 priming of Zea mays plants under salt stress. As expected, salt treatment promoted a considerable accumulation of Na+ ions, a 12-fold increase. It drastically affected growth parameters and relative water content, as well as promoted adverse alteration in the proteome profile, when compared to the absence of salt conditions. Conversely, H2O2 priming was beneficial via specific proteome reprogramming, which promoted better response to salinity by 16% reduction in Na+ content and shoots growth improvement, increasing 61% in dry mass. The identified proteins were associated with photosynthesis and redox homeostasis, critical metabolic pathways for helping plants survive in saline stress by the protection of chloroplasts organization and carbon fixation, as well as state redox. This research provides new proteomic data to improve understanding and forward identifying biotechnological strategies to promote salt stress tolerance.


Subject(s)
Hydrogen Peroxide/toxicity , Proteomics , Salt Stress/drug effects , Zea mays/physiology , Malondialdehyde/metabolism , Phenotype , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Potassium/metabolism , Proteome/metabolism , Sodium/metabolism , Water , Zea mays/drug effects , Zea mays/growth & development
5.
Plant Physiol Biochem ; 154: 723-734, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32763797

ABSTRACT

This study investigated the proteome modulation and physiological responses of Sorghum bicolor plants grown in nutrient solutions containing nitrate (NO3-) or ammonium (NH4+) at 5.0 mM, and subjected to salinity with 75 mM NaCl for ten days. Salinity promoted significant reductions in leaf area, root and shoot dry mass of sorghum plants, regardless of nitrogen source; however, higher growth was observed in ammonium-grown plants. The better performance of ammonium-fed stressed plants was associated with low hydrogen peroxide accumulation, and improved CO2 assimilation and K+/Na+ homeostasis under salinity. Proteomic study revealed a nitrogen source-induced differential modulation in proteins related to photosynthesis/carbon metabolism, energy metabolism, response to stress and other cellular processes. Nitrate-fed plants induced thylakoidal electron transport chain proteins and structural and carbon assimilation enzymes, but these mechanisms seemed to be insufficient to mitigate salt damage in photosynthetic performance. In contrast, the greater tolerance to salinity of ammonium-grown plants may have arisen from: i.) de novo synthesis or upregulation of enzymes from photosynthetic/carbon metabolism, which resulted in better CO2 assimilation rates under NaCl-stress; ii.) activation of proteins involved in energy metabolism which made available energy for salt responses, most likely by proton pumps and Na+/H+ antiporters; and iii.) reprogramming of proteins involved in response to stress and other metabolic processes, constituting intricate pathways of salt responses. Overall, our findings not only provide new insights of molecular basis of salt tolerance in sorghum plants induced by ammonium nutrition, but also give new perspectives to develop biotechnological strategies to generate more salt-tolerant crops.


Subject(s)
Ammonium Compounds , Salt Tolerance , Sorghum/physiology , Plant Leaves , Proteomics , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...