Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Mol Med (Berl) ; 94(4): 417-29, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26564151

ABSTRACT

UNLABELLED: In spite of considerable evidence on the regulation of immunity by thyroid hormones, the impact of the thyroid status in tumor immunity is poorly understood. Here, we evaluated the antitumor immune responses evoked in mice with different thyroid status (euthyroid, hyperthyroid, and hypothyroid) that developed solid tumors or metastases after inoculation of syngeneic T lymphoma cells. Hyperthyroid mice showed increased tumor growth along with increased expression of cell cycle regulators compared to hypothyroid and control tumor-bearing mice. However, hypothyroid mice showed a higher frequency of metastases than the other groups. Hyperthyroid mice bearing tumors displayed a lower number of tumor-infiltrating T lymphocytes, lower percentage of functional IFN-γ-producing CD8(+) T cells, and higher percentage of CD19(+) B cells than euthyroid tumor-bearing mice. However, no differences were found in the distribution of lymphocyte subpopulations in tumor-draining lymph nodes (TDLNs) or spleens among different experimental groups. Interestingly, hypothyroid TDLN showed an increased percentage of regulatory T (Treg) cells, while hyperthyroid mice displayed increased number and activity of splenic NK cells, which frequency declined in spleens from hypothyroid mice. Moreover, a decreased number of splenic myeloid-derived suppressor cells (MDSCs) were found in tumor-bearing hyperthyroid mice as compared to hypothyroid or euthyroid mice. Additionally, hyperthyroid mice showed increased cytotoxic activity, which declined in hypothyroid mice. Thus, low levels of intratumoral cytotoxic activity would favor tumor local growth in hyperthyroid mice, while regional and systemic antitumor response may contribute to tumor dissemination in hypothyroid animals. Our results highlight the importance of monitoring the thyroid status in patients with T cell lymphomas. KEY MESSAGES: T cell lymphoma phenotype is paradoxically influenced by thyroid status. Hyperthyroidism favors tumor growth and hypothyroidism rises tumor dissemination. Thyroid status affects the distribution of immune cell types in the tumor milieu. Thyroid status also modifies the nature of local and systemic immune responses.


Subject(s)
Immunomodulation , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/metabolism , Thyroid Diseases/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Female , Hyperthyroidism/metabolism , Hypothyroidism/metabolism , Lymphocyte Count , Lymphoma, T-Cell/complications , Lymphoma, T-Cell/pathology , Mice , Neoplasm Metastasis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Thyroid Diseases/complications , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Tumor Burden , Tumor Microenvironment/immunology
3.
J Endocrinol ; 222(2): 243-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24928937

ABSTRACT

We have shown in vitro that thyroid hormones (THs) regulate the balance between proliferation and apoptosis of T lymphoma cells. The effects of THs on tumor development have been studied, but the results are still controversial. Herein, we show the modulatory action of thyroid status on the in vivo growth of T lymphoma cells. For this purpose, euthyroid, hypothyroid, and hyperthyroid mice received inoculations of EL4 cells to allow the development of solid tumors. Tumors in the hyperthyroid animals exhibited a higher growth rate, as evidenced by the early appearance of palpable solid tumors and the increased tumor volume. These results are consistent with the rate of cell division determined by staining tumor cells with carboxyfluorescein succinimidyl ester. Additionally, hyperthyroid mice exhibited reduced survival. Hypothyroid mice did not differ significantly from the euthyroid controls with respect to these parameters. Additionally, only tumors from hyperthyroid animals had increased expression levels of proliferating cell nuclear antigen and active caspase 3. Differential expression of cell cycle regulatory proteins was also observed. The levels of cyclins D1 and D3 were augmented in the tumors of the hyperthyroid animals, whereas the cell cycle inhibitors p16/INK4A (CDKN2A) and p27/Kip1 (CDKN1B) and the tumor suppressor p53 (TRP53) were increased in hypothyroid mice. Intratumoral and peritumoral vasculogenesis was increased only in hyperthyroid mice. Therefore, we propose that the thyroid status modulates the in vivo growth of EL4 T lymphoma through the regulation of cyclin, cyclin-dependent kinase inhibitor, and tumor suppressor gene expression, as well as the stimulation of angiogenesis.


Subject(s)
Hyperthyroidism/physiopathology , Hypothyroidism/physiopathology , Lymphoma, T-Cell/physiopathology , Thyroid Gland/physiology , Animals , Apoptosis , Caspase 3/biosynthesis , Cell Cycle Proteins/biosynthesis , Cell Line, Tumor , Cell Proliferation , Cyclin D1/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p27/biosynthesis , Female , Hyperthyroidism/complications , Hypothyroidism/complications , Lymphoma, T-Cell/pathology , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Neovascularization, Pathologic , Proliferating Cell Nuclear Antigen/biosynthesis , Proliferating Cell Nuclear Antigen/metabolism , Tumor Suppressor Protein p53/biosynthesis
4.
Apoptosis ; 18(11): 1376-1390, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23733107

ABSTRACT

Thyroid hormones are important regulators of cell physiology, inducing cell proliferation, differentiation or apoptosis, depending on the cell type. Thyroid hormones induce proliferation in short-term T lymphocyte cultures. In this study, we assessed the effect of long-term thyroxine (T4) treatment on the balance of proliferation and apoptosis and the intermediate participants in T lymphoma cells. Treatment with T4 affected this balance from the fifth day of culture, inhibiting proliferation in a time-dependent manner. This effect was associated with apoptosis induction, as characterized through nuclear morphological changes, DNA fragmentation, and Annexin V-FITC/Propidium Iodide co-staining. In addition, increased iNOS gene and protein levels, and enzyme activity were observed. The generation of reactive oxygen species, depolarization of the mitochondrial membrane, and a reduction in glutathione levels were also observed. The imbalance between oxidants and antioxidants species is typically associated with the nitration of proteins, including PKCζ, an isoenzyme essential for lymphoma cell division and survival. Consistently, evidence of PKCζ nitration via proteasome degradation was also observed in this study. Taken together, these results suggest that the long-term culture of T lymphoma cells with T4 induces apoptosis through the increased production of oxidative species resulting from both augmented iNOS activity and the loss of mitochondrial function. These species induce the nitration of proteins involved in cell viability, promoting proteasome degradation. Furthermore, we discuss the impact of these results on the modulation of T lymphoma growth and the thyroid status in vivo.


Subject(s)
Apoptosis/drug effects , Lymphoma, T-Cell/metabolism , Mitochondria/drug effects , Nitric Oxide Synthase Type II/genetics , Protein Kinase C/genetics , Thyroxine/pharmacology , Animals , Annexin A5 , Cell Line, Tumor , Cell Proliferation , Coloring Agents , DNA Fragmentation/drug effects , Gene Expression Regulation , Glutathione/metabolism , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Nitrates/metabolism , Nitric Oxide Synthase Type II/metabolism , Propidium , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Kinase C/metabolism , Proteolysis/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...