Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 8(29): 2763-74, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-25206587

ABSTRACT

One of the well-defined sexually dimorphic structures in the brain is the sexually dimorphic nucleus, a cluster of cells located in the preoptic area of the hypothalamus. The rodent sexually dimorphic nucleus of the preoptic area can be delineated histologically using conventional Nissl staining or immunohistochemically using calbindin D28K immunoreactivity. There is increasing use of the bindin D28K-delineated neural cluster to define the sexually dimorphic nucleus of the preoptic area in rodents. Several mechanisms are proposed to underlie the processes that contribute to the sexual dimorphism (size difference) of the sexually dimorphic nucleus of the preoptic area. Recent evidence indicates that stem cell activity, including proliferation and migration presumably from the 3(rd) ventricle stem cell niche, may play a critical role in the postnatal development of the sexually dimorphic nucleus of the preoptic area and its distinguishing sexually dimorphic feature: a signifi-cantly larger volume in males. Sex hormones and estrogen-like compounds can affect the size of the sexually dimorphic nucleus of the preoptic area. Despite considerable research, it remains un-clear whether estrogen-like compounds and/or sex hormones increase size of the sexually dimor-phic nucleus of the preoptic area via an increase in stem cell activity originating from the 3(rd) ventricle stem cell niche.

SELECTION OF CITATIONS
SEARCH DETAIL
...