Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Hyperthermia ; 41(1): 2352545, 2024.
Article in English | MEDLINE | ID: mdl-38991549

ABSTRACT

Magnetic resonance thermometry (MRT) can measure in-vivo 3D-temperature changes in real-time and noninvasively. However, for the oropharynx region and the entire head and neck, motion potentially introduces large artifacts. Considering long treatment times of 60-90 min, this study aims to evaluate whether MRT around the oropharynx is clinically feasible for hyperthermia treatments and quantify the effects of breathing and swallowing on MRT performance. A 3D-ME-FGRE sequence was used in a phantom cooling down and around the oropharynx of five volunteers over ∼75 min. The imaging protocol consisted of imaging with acceleration (ARC = 2), number of image averages (NEX = 1,2 and 3). For volunteers, the acquisitions included a breath-hold scan and scans with deliberate swallowing. MRT performance was quantified in neck muscle, spinal cord and masseter muscle, using mean average error (MAE), mean error (ME) and spatial standard deviation (SD). In phantom, an increase in NEX leads to a significant decrease in SD, but MAE and ME were unchanged. No significant difference was found in volunteers between the different scans. There was a significant difference between the regions evaluated: neck muscle had the best MAE (=1.96 °C) and SD (=0.82 °C), followed by spinal cord (MAE = 3.17 °C, SD = 0.92 °C) and masseter muscle (MAE = 4.53 °C, SD = 1.16 °C). Concerning the ME, spinal cord did best, then neck muscle and masseter muscle, with values of -0.64 °C, 1.15 °C and -3.05 °C respectively. Breathing, swallowing, and different ways of imaging (acceleration and NEX) do not significantly influence the MRT performance in the oropharynx region. The ROI selected however, leads to significant differences.


Subject(s)
Magnetic Resonance Imaging , Oropharynx , Thermometry , Humans , Magnetic Resonance Imaging/methods , Thermometry/methods , Oropharynx/diagnostic imaging , Male , Adult , Hyperthermia, Induced/methods , Female , Phantoms, Imaging
2.
IEEE Open J Eng Med Biol ; 5: 99-106, 2024.
Article in English | MEDLINE | ID: mdl-38445240

ABSTRACT

Hyperthermia treatment consists of elevating the temperature of the tumor to increase the effectiveness of radiotherapy and chemotherapy. Hyperthermia treatment planning (HTP) is an important tool to optimize treatment quality using pre-treatment temperature predictions. The accuracy of these predictions depends on modeling uncertainties such as tissue properties and positioning. In this study, we evaluated if HTP accuracy improves when the patient is imaged inside the applicator at the start of treatment. Because perfusion is a major uncertainty source, the importance of accurate treatment position and anatomy was evaluated using different perfusion values. Volunteers were scanned using MR imaging without ("planning setup") and with the MR-compatible hyperthermia device ("treatment setup"). Temperature-based quality indicators were used to assess the differences between the standard, apparent and the optimized hyperthermia dose. We conclude that pre-treatment imaging can improve HTP predictions accuracy but also, that tissue perfusion modelling is crucial if temperature-based optimization is applied.

3.
J Therm Biol ; 115: 103625, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37429086

ABSTRACT

PURPOSE: To compare different thermal tissue models for head and neck hyperthermia treatment planning, and to assess the results using predicted and measured applied power data from clinical treatments. METHODS: Three commonly used temperature models from literature were analysed: "constant baseline", "constant thermal stress" and "temperature dependent". Power and phase data of 93 treatments of 20 head and neck patients treated with the HYPERcollar3D applicator were used. The impact on predicted median temperature T50 inside the target region was analysed with maximum allowed temperature of 44 °C in healthy tissue. The robustness of predicted T50 for the three models against the influence of blood perfusion, thermal conductivity and the assumed hotspot temperature level was analysed. RESULTS: We found an average predicted T50 of 41.0 ± 1.3 °C (constant baseline model), 39.9 ± 1.1 °C (constant thermal stress model) and 41.7 ± 1.1 °C (temperature dependent model). The constant thermal stress model resulted in the best agreement between the predicted power (P = 132.7 ± 45.9 W) and the average power measured during the hyperthermia treatments (P = 129.1 ± 83.0 W). CONCLUSION: The temperature dependent model predicts an unrealistically high T50. The power values for the constant thermal stress model, after scaling simulated maximum temperatures to 44 °C, matched best to the average measured powers. We consider this model to be the most appropriate for temperature predictions using the HYPERcollar3D applicator, however further studies are necessary for developing of robust temperature model for tissues during heat stress.


Subject(s)
Hyperthermia, Induced , Humans , Hyperthermia, Induced/methods , Temperature , Neck , Hyperthermia/etiology , Head
4.
Int J Hyperthermia ; 40(1): 2184399, 2023.
Article in English | MEDLINE | ID: mdl-36907223

ABSTRACT

PURPOSE: MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS: MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS: The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION: For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.


Subject(s)
Hyperthermia, Induced , Thermometry , Humans , Thermometry/methods , Hyperthermia, Induced/methods , Phantoms, Imaging , Brain , Magnetic Resonance Imaging/methods
5.
Int J Hyperthermia ; 40(1): 2151648, 2023.
Article in English | MEDLINE | ID: mdl-36535922

ABSTRACT

PURPOSE: We studied the differences between planning and treatment position, their impact on the accuracy of hyperthermia treatment planning (HTP) predictions, and the relevance of including true treatment anatomy and position in HTP based on magnetic resonance (MR) images. MATERIALS AND METHODS: All volunteers were scanned with an MR-compatible hyperthermia device, including a filled waterbolus, to replicate the treatment setup. In the planning setup, the volunteers were scanned without the device to reproduce the imaging in the current HTP. First, we used rigid registration to investigate the patient position displacements between the planning and treatment setup. Second, we performed HTP for the planning anatomy at both positions and the treatment mimicking anatomy to study the effects of positioning and anatomy on the quality of the simulated hyperthermia treatment. Treatment quality was evaluated using SAR-based parameters. RESULTS: We found an average displacement of 2 cm between planning and treatment positions. These displacements caused average absolute differences of ∼12% for TC25 and 10.4%-15.9% in THQ. Furthermore, we found that including the accurate treatment position and anatomy in treatment planning led to an improvement of 2% in TC25 and 4.6%-10.6% in THQ. CONCLUSIONS: This study showed that precise patient position and anatomy are relevant since these affect the accuracy of HTP predictions. The major part of improved accuracy is related to implementing the correct position of the patient in the applicator. Hence, our study shows a clear incentive to accurately match the patient position in HTP with the actual treatment.


Subject(s)
Hyperthermia, Induced , Therapy, Computer-Assisted , Uterine Cervical Neoplasms , Female , Humans , Hyperthermia, Induced/methods , Magnetic Resonance Imaging , Therapy, Computer-Assisted/methods
7.
Phys Med ; 101: 87-94, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35987024

ABSTRACT

PURPOSE: Hyperthermia is a cancer treatment in which the target region is heated to temperatures of 40-44 °C usually applying external electromagnetic field sources. The behavior of the hyperthermia applicators (antennas) in clinical practice should be periodically checked with phantom experiments to verify the applicator's performance over time. The purpose of this study was to investigate the application of photogrammetry reconstructions of 3D applicator position in these quality control procedure measurements. METHODS: Photogrammetry reconstruction was applied at superficial hyperthermia scenario using the Lucite cone applicator (LCA) and phased-array heating in the head and neck region using the HYPERcollar3D. Wire-frame models of the entire measurement setups were created from multiple-view images and used for recreation of the setup inside 3D electromagnetic field simulation software. We evaluated applicator relation (Ra) between measured and simulated absolute specific absorption rate (SAR) for manually created and photogrammetry reconstructed simulation setups. RESULTS: We found a displacement of 7.9 mm for the LCA and 8.2 mm for the HYPERcollar3D setups when comparing manually created and photogrammetry reconstructed applicator models placements. Ra improved from 1.24 to 1.18 for the LCA and from 1.17 to 1.07 for the HYPERcollar3D when using photogrammetry reconstructed simulation setups. CONCLUSION: Photogrammetry reconstruction technique holds promise to improve measurement setup reconstruction and agreement between measured and simulated absolute SAR.


Subject(s)
Hyperthermia, Induced , Phantoms, Imaging , Photogrammetry , Polymethyl Methacrylate , Quality Control
8.
Med Phys ; 49(8): 4955-4970, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717578

ABSTRACT

BACKGROUND: During resonance frequency (RF) hyperthermia treatment, the temperature of the tumor tissue is elevated to the range of 39-44°C. Accurate temperature monitoring is essential to guide treatments and ensure precise heat delivery and treatment quality. Magnetic resonance (MR) thermometry is currently the only clinical method to measure temperature noninvasively in a volume during treatment. However, several studies have shown that this approach is not always sufficiently accurate for thermal dosimetry in areas with motion, such as the pelvic region. Model-based temperature estimation is a promising approach to correct and supplement 3D online temperature estimation in regions where MR thermometry is unreliable or cannot be measured. However, complete 3D temperature modeling of the pelvic region is too complex for online usage. PURPOSE: This study aimed to evaluate the use of proper orthogonal decomposition (POD) model reduction combined with Kalman filtering to improve temperature estimation using MR thermometry. Furthermore, we assessed the benefit of this method using data from hyperthermia treatment where there were limited and unreliable MR thermometry measurements. METHODS: The performance of POD-Kalman filtering was evaluated in several heating experiments and for data from patients treated for locally advanced cervical cancer. For each method, we evaluated the mean absolute error (MAE) concerning the temperature measurements acquired by the thermal probes, and we assessed the reproducibility and consistency using the standard deviation of error (SDE). Furthermore, three patient groups were defined according to susceptibility artifacts caused by the level of intestinal gas motion to assess if the POD-Kalman filtering could compensate for missing and unreliable MR thermometry measurements. RESULTS: First, we showed that this method is beneficial and reproducible in phantom experiments. Second, we demonstrated that the combined method improved the match between temperature prediction and temperature acquired by intraluminal thermometry for patients treated for locally advanced cervical cancer. Considering all patients, the POD-Kalman filter improved MAE by 43% (filtered MR thermometry = 1.29°C, POD-Kalman filtered temperature = 0.74°C). Moreover, the SDE was improved by 47% (filtered MR thermometry = 1.16°C, POD-Kalman filtered temperature = 0.61°C). Specifically, the POD-Kalman filter reduced the MAE by approximately 60% in patients whose MR thermometry was unreliable because of the great amount of susceptibilities caused by the high level of intestinal gas motion. CONCLUSIONS: We showed that the POD-Kalman filter significantly improved the accuracy of temperature monitoring compared to MR thermometry in heating experiments and hyperthermia treatments. The results demonstrated that POD-Kalman filtering can improve thermal dosimetry during RF hyperthermia treatment, especially when MR thermometry is inaccurate.


Subject(s)
Hyperthermia, Induced , Thermometry , Uterine Cervical Neoplasms , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Reproducibility of Results , Temperature , Thermometry/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/therapy
9.
Cancers (Basel) ; 13(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34885235

ABSTRACT

During hyperthermia cancer treatments, especially in semi-deep hyperthermia in the head and neck (H&N) region, the induced temperature pattern is the result of a complex interplay between energy delivery and tissue cooling. The purpose of this study was to establish a water bolus temperature guide for the HYPERcollar3D H&N applicator. First, we measured the HYPERcollar3D water bolus heat-transfer coefficient. Then, for 20 H&N patients and phase/amplitude settings of 93 treatments we predict the T50 for nine heat-transfer coefficients and ten water bolus temperatures ranging from 20-42.5 °C. Total power was always tuned to obtain a maximum of 44 °C in healthy tissue in all simulations. As a sensitivity study we used constant and temperature-dependent tissue cooling properties. We measured a mean heat-transfer coefficient of h = 292 W m-2K-1 for the HYPERcollar3D water bolus. The predicted T50 shows that temperature coverage is more sensitive to the water bolus temperature than to the heat-transfer coefficient. We propose changing the water bolus temperature from 30 °C to 35 °C which leads to a predicted T50 increase of +0.17/+0.55 °C (constant/temperature-dependent) for targets with a median depth < 20 mm from the skin surface. For deeper targets, maintaining a water bolus temperature at 30 °C is proposed.

10.
Cancers (Basel) ; 13(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885258

ABSTRACT

(1) Background: Head and neck cancer (HNC) patients with recurrent or second primary (SP) tumors in previously irradiated areas represent a clinical challenge. Definitive or postoperative reirradiation with or without sensitizing therapy, like chemotherapy, should be considered. As an alternative to chemotherapy, hyperthermia has shown to be a potent sensitizer of radiotherapy in clinical studies in the primary treatment of HNC. At our institution, we developed the Hypercollar3D, as the successor to the Hypercollar, to enable improved application of hyperthermia for deeply located HNC. In this study, we report on the feasibility and clinical outcome of patients treated with the Hypercollar3D as an adjuvant to reirradiation in recurrent or SP HNC patients; (2) Methods: We retrospectively analyzed all patients with a recurrent or SP HNC treated with reirradiation combined with hyperthermia using the Hypercollar3D between 2014 and 2018. Data on patients, tumors, and treatments were collected. Follow-up data on disease specific outcomes as well as acute and late toxicity were collected. Data were analyzed using Kaplan Meier analyses; (3) Results: Twenty-two patients with recurrent or SP HNC were included. The average mean estimated applied cfSAR to the tumor volume for the last 17 patients was 80.5 W/kg. Therefore, the novel Hypercollar3D deposits 55% more energy at the target than our previous Hypercollar applicator. In patients treated with definitive thermoradiotherapy a complete response rate of 81.8% (9/11) was observed at 12 weeks following radiotherapy. Two-year local control (LC) and overall survival (OS) were 36.4% (95% CI 17.4-55.7%) and 54.6% (95% CI 32.1-72.4%), respectively. Patients with an interval longer than 24 months from their previous radiotherapy course had an LC of 66.7% (95% CI 37.5-84.6%), whereas patients with a time interval shorter than 24 months had an LC of 14.3% (95% CI 0.7-46.5%) at 18 months (p = 0.01). Cumulative grade 3 or higher toxicity was 39.2% (95% CI 16.0-61.9%); (4) Conclusions: Reirradiation combined with deep hyperthermia in HNC patients using the novel Hypercollar3D is feasible and deposits an average cfSAR of 80.5 W/kg in the tumor volume. The treatment results in high complete response rates at 12 weeks post-treatment. Local control and local toxicity rates were comparable to those reported for recurrent or SP HNC. To further optimize the hyperthermia treatment in the future, temperature feedback is warranted to apply heat at the maximum tolerable dose without toxicity. These data support further research in hyperthermia as an adjuvant to radiotherapy, both in the recurrent as well as in the primary treatment of HNC patients.

11.
Cancers (Basel) ; 13(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830773

ABSTRACT

Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40-44 °C for 60-90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<-15 dB) and the intended low interaction between the individual antenna modules (<-32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR-hyperthermia in the H&N and is ready for in vivo investigation.

12.
Int J Hyperthermia ; 38(1): 1425-1442, 2021.
Article in English | MEDLINE | ID: mdl-34581246

ABSTRACT

BACKGROUND: The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. MATERIALS AND METHODS: The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. RESULTS AND DISCUSSION: Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). CONCLUSION: We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included.


Subject(s)
Hyperthermia, Induced , Neoplasms , Benchmarking , Computer Simulation , Humans , Hyperthermia , Neoplasms/therapy
13.
Cancers (Basel) ; 13(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34298716

ABSTRACT

The efficacy of a hyperthermia treatment depends on the delivery of well-controlled heating; hence, accurate temperature monitoring is essential for ensuring effective treatment. For deep pelvic hyperthermia, there are no comprehensive and systematic reports on MR thermometry. Moreover, data inclusion generally lacks objective selection criteria leading to a high probability of bias when comparing results. Herein, we studied whether imaging-based data inclusion predicts accuracy and could serve as a tool for prospective patient selection. The accuracy of the MR thermometry in patients with locally advanced cervical cancer was benchmarked against intraluminal temperature. We found that gastrointestinal air motion at the start of the treatment, quantified by the Jaccard similarity coefficient, was a good predictor for MR thermometry accuracy. The results for the group that was selected for low gastrointestinal air motion improved compared to the results for all patients by 50% (accuracy), 26% (precision), and 80% (bias). We found an average MR thermometry accuracy of 2.0 °C when all patients were considered and 1.0 °C for the selected group. These results serve as the basis for comprehensive benchmarking of novel technologies. The Jaccard similarity coefficient also has good potential to prospectively determine in which patients the MR thermometry will be valuable.

14.
IEEE Trans Biomed Eng ; 68(2): 712-717, 2021 02.
Article in English | MEDLINE | ID: mdl-32746075

ABSTRACT

Temperature monitoring plays a central role in improving clinical effectiveness of adjuvant hyperthermia. The potential of magnetic resonance thermometry for treatment monitoring purposes led to several MR-guided hyperthermia approaches. However, the proposed solutions were sub-optimal due to technological and intrinsic limitations. These hamper achieving target conformal heating possibilities (applicator limitations) and accurate thermometry (inadequate signal-to-noise-ratio (SNR)). In this work, we studied proof of principle of a dual-function hyperthermia approach based on a coil array (64 MHz, 1.5 T) that is integrated in-between a phased array for heating (434 MHz) for maximum signal receive in order to improve thermometry accuracy. Hereto, we designed and fabricated a superficial hyperthermia mimicking planar array setup to study the most challenging interactions of generic phased-array setups in order to validate the integrated approach. Experiments demonstrated that the setup complies with the superficial hyperthermia guidelines for heating and is able to improve SNR at 2-4 cm depth by 17%, as compared to imaging using the body coil. Hence, the results showed the feasibility of our dual-function MR-guided hyperthermia approach as basis for the development of application specific setups.


Subject(s)
Hyperthermia, Induced , Thermometry , Humans , Hyperthermia , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
15.
Cancers (Basel) ; 13(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374176

ABSTRACT

Hyperthermia treatments in the clinic rely on accurate temperature measurements to guide treatments and evaluate clinical outcome. Currently, magnetic resonance thermometry (MRT) is the only clinical option to non-invasively measure 3D temperature distributions. In this review, we evaluate the status quo and emerging approaches in this evolving technology for replacing conventional dosimetry based on intraluminal or invasively placed probes. First, we define standardized MRT performance thresholds, aiming at facilitating transparency in this field when comparing MR temperature mapping performance for the various scenarios that hyperthermia is currently applied in the clinic. This is based upon our clinical experience of treating nearly 4000 patients with superficial and deep hyperthermia. Second, we perform a systematic literature review, assessing MRT performance in (I) clinical and (II) pre-clinical papers. From (I) we identify the current clinical status of MRT, including the problems faced and from (II) we extract promising new techniques with the potential to accelerate progress. From (I) we found that the basic requirements for MRT during hyperthermia in the clinic are largely met for regions without motion, for example extremities. In more challenging regions (abdomen and thorax), progress has been stagnating after the clinical introduction of MRT-guided hyperthermia over 20 years ago. One clear difficulty for advancement is that performance is not or not uniformly reported, but also that studies often omit important details regarding their approach. Motion was found to be the common main issue hindering accurate MRT. Based on (II), we reported and highlighted promising developments to tackle the issues resulting from motion (directly or indirectly), including new developments as well as optimization of already existing strategies. Combined, these may have the potential to facilitate improvement in MRT in the form of more stable and reliable measurements via better stability and accuracy.

16.
Cancers (Basel) ; 12(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947939

ABSTRACT

In hyperthermia, the general opinion is that pre-treatment optimization of treatment settings requires a patient-specific model. For deep pelvic hyperthermia treatment planning (HTP), tissue models comprising four tissue categories are currently discriminated. For head and neck HTP, we found that more tissues are required for increasing accuracy. In this work, we evaluated the impact of the number of segmented tissues on the predicted specific absorption rate (SAR) for the pelvic region. Highly detailed anatomical models of five healthy volunteers were selected from a virtual database. For each model, seven lists with varying levels of segmentation detail were defined and used as an input for a modeling study. SAR changes were quantified using the change in target-to-hotspot-quotient and maximum SAR relative differences, with respect to the most detailed patient model. The main finding of this study was that the inclusion of high water content tissues in the segmentation may result in a clinically relevant impact on the SAR distribution and on the predicted hyperthermia treatment quality when considering our pre-established thresholds. In general, our results underline the current clinical segmentation protocol and help to prioritize any improvements.

17.
Int J Hyperthermia ; 37(1): 1103-1115, 2020.
Article in English | MEDLINE | ID: mdl-32981391

ABSTRACT

INTRODUCTION: Within the hyperthermia community, consensus exists that clinical outcome of the treatment radiotherapy and/or chemotherapy plus hyperthermia (i.e. elevating tumor temperature to 40 - 44 °C) is related to the applied thermal dose; hence, treatment quality is crucial for the success of prospective multi-institution clinical trials. Currently, applicator quality assurance (QA) measurements are implemented independently at each institution using basic cylindrical phantoms. A multi-institution comparison of heating quality using magnetic resonance thermometry (MRT) and anatomical representative anthropomorphic phantoms provides a unique opportunity to obtain novel QA insights to facilitate multi-institution trial evaluation. OBJECTIVE: Perform a systematic QA procedure to compare the performance of MR-compatible hyperthermia systems in five institutions. METHODS AND MATERIALS: Anthropomorphic phantoms, including pelvic and spinal bones, were produced. Clinically relevant power of 600 watts was applied for ∼12 min to allow for 8 sequential MR-scans. The 3D-heating distribution, steering capabilities, and presence of off-target heating were analyzed. RESULTS: The evaluated devices show comparable heating profiles for centric and eccentric targets. The differences observed in the 3D-heating profiles are the result of variations in the exact phantom positioning and applicator characteristics, whereby positioning of the phantom followed current ESHO-QA guidelines. CONCLUSION: Anthropomorphic phantoms were used to perform QA-measurements of MR-guided hyperthermia systems operating in MR-scanners of different brands. Comparable heating profiles are shown for the five evaluated institutions. Subcentimeter differences in position substantially affected the results when evaluating the heating patterns. Integration of advanced phantoms and precise positioning in QA-guidelines should be evaluated to guarantee the best quality patient care.


Subject(s)
Heating , Hyperthermia, Induced , Humans , Hyperthermia , Magnetic Resonance Imaging , Phantoms, Imaging , Prospective Studies
18.
Int J Hyperthermia ; 37(1): 608-616, 2020.
Article in English | MEDLINE | ID: mdl-32515240

ABSTRACT

Purpose: Thermal dose-effect relations have demonstrated that clinical effectiveness of hyperthermia would benefit from more controlled heating of the tumor. Hyperthermia treatment planning (HTP) is a potent tool to study strategies enabling target conformal heating, but its accuracy is affected by patient modeling approximations. Homogeneous phantoms models are being used that do not match the body shape of patients in treatment position and often have unrealistic target volumes. As a consequence, simulation accuracy is affected, and performance comparisons are difficult. The aim of this study is to provide the first step toward standardization of HTP simulation studies in terms of patient modeling by introducing the Erasmus Virtual Patient Repository (EVPR): a virtual patient model database.Methods: Four patients with a tumor in the head and neck or the pelvis region were selected, and corresponding models were created using a clinical segmentation procedure. Using the Erasmus University Medical Center standard procedure, HTP was applied to these models and compared to HTP for commonly used surrogate models.Results: Although this study was aimed at presenting the EVPR database, our study illustrates that there is a non-negligible difference in the predicted SAR patterns between patient models and homogeneous phantom-based surrogate models. We further demonstrate the difference between actual and simplified target volumes being used today.Conclusion: Our study describes the EVPR for the research community as a first step toward standardization of hyperthermia simulation studies.


Subject(s)
Hyperthermia, Induced , Hyperthermia , Computer Simulation , Head , Humans , Reference Standards
19.
Sensors (Basel) ; 20(10)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456027

ABSTRACT

The potential of MR thermometry (MRT) fostered the development of MRI compatible radiofrequency (RF) hyperthermia devices. Such device integration creates major technological challenges and a crucial point for image quality is the water bolus (WB). The WB is located between the patient body and external sources to both couple electromagnetic energy and to cool the patient skin. However, the WB causes MRT errors and unnecessarily large field of view. In this work, we studied making the WB MRI transparent by an optimal concentration of compounds capable of modifying T 2 * relaxation without an impact on the efficiency of RF heating. Three different T 2 * reducing compounds were investigated, namely CuSO 4 , MnCl 2 , and Fe 3 O 4 . First, electromagnetic properties and T 2 * relaxation rates at 1.5 T were measured. Next, through multi-physics simulations, the predicted effect on the RF-power deposition pattern was evaluated and MRT precision was experimentally assessed. Our results identified 5 mM Fe 3 O 4 solution as optimal since it does not alter the RF-power level needed and improved MRT precision from 0.39 ∘ C to 0.09 ∘ C. MnCl 2 showed a similar MRT improvement, but caused unacceptable RF-power losses. We conclude that adding Fe 3 O 4 has significant potential to improve RF hyperthermia treatment monitoring under MR guidance.


Subject(s)
Hyperthermia, Induced/methods , Magnetic Resonance Imaging , Radio Waves , Thermometry , Humans , Phantoms, Imaging , Water
20.
Int J Hyperthermia ; 37(1): 15-27, 2020.
Article in English | MEDLINE | ID: mdl-31918599

ABSTRACT

Clinical trials have demonstrated the therapeutic benefits of adding radiofrequency (RF) hyperthermia (HT) as an adjuvant to radio- and chemotherapy. However, maximum utilization of these benefits is hampered by the current inability to maintain the temperature within the desired range. RF HT treatment quality is usually monitored by invasive temperature sensors, which provide limited data sampling and are prone to infection risks. Magnetic resonance (MR) temperature imaging has been developed to overcome these hurdles by allowing noninvasive 3D temperature monitoring in the target and normal tissues. To exploit this feature, several approaches for inserting the RF heating devices into the MR scanner have been proposed over the years. In this review, we summarize the status quo in MR-guided RF HT devices and analyze trends in these hybrid hardware configurations. In addition, we discuss the various approaches, extract best practices and identify gaps regarding the experimental validation procedures for MR - RF HT, aimed at converging to a common standard in this process.


Subject(s)
Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Radiofrequency Therapy/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...