Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805281

ABSTRACT

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Subject(s)
Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , RNA, Long Noncoding , T-Lymphocytes, Regulatory , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Cell Differentiation/genetics
2.
Front Immunol ; 13: 856762, 2022.
Article in English | MEDLINE | ID: mdl-35784351

ABSTRACT

T helper 17 (Th17) cells protect against fungal and bacterial infections and are implicated in autoimmunity. Several long intergenic noncoding RNAs (lincRNA) are induced during Th17 differentiation, however, their contribution to Th17 differentiation is poorly understood. We aimed to characterize the function of the lincRNA Myocardial Infarction Associated Transcript (MIAT) during early human Th17 cell differentiation. We found MIAT to be upregulated early after induction of human Th17 cell differentiation along with an increase in the chromatin accessibility at the gene locus. STAT3, a key regulator of Th17 differentiation, directly bound to the MIAT promoter and induced its expression during the early stages of Th17 cell differentiation. MIAT resides in the nucleus and regulates the expression of several key Th17 genes, including IL17A, IL17F, CCR6 and CXCL13, possibly by altering the chromatin accessibility of key loci, including IL17A locus. Further, MIAT regulates the expression of protein kinase C alpha (PKCα), an upstream regulator of IL17A. A reanalysis of published single-cell RNA-seq data showed that MIAT was expressed in T cells from the synovium of RA patients. Our results demonstrate that MIAT contributes to human Th17 differentiation by upregulating several genes implicated in Th17 differentiation. High MIAT expression in T cells of RA patient synovia suggests a possible role of MIAT in Th17 mediated autoimmune pathologies.


Subject(s)
Myocardial Infarction , RNA, Long Noncoding , Cell Differentiation/genetics , Chromatin/genetics , Humans , Lymphocyte Activation , Myocardial Infarction/genetics , RNA, Long Noncoding/genetics
3.
NAR Genom Bioinform ; 3(3): lqab059, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34235431

ABSTRACT

Changes in cellular chromatin states fine-tune transcriptional output and ultimately lead to phenotypic changes. Here we propose a novel application of our reproducibility-optimized test statistics (ROTS) to detect differential chromatin states (ATAC-seq) or differential chromatin modification states (ChIP-seq) between conditions. We compare the performance of ROTS to existing and widely used methods for ATAC-seq and ChIP-seq data using both synthetic and real datasets. Our results show that ROTS outperformed other commonly used methods when analyzing ATAC-seq data. ROTS also displayed the most accurate detection of small differences when modeling with synthetic data. We observed that two-step methods that require the use of a separate peak caller often more accurately called enrichment borders, whereas one-step methods without a separate peak calling step were more versatile in calling sub-peaks. The top ranked differential regions detected by the methods had marked correlation with transcriptional differences of the closest genes. Overall, our study provides evidence that ROTS is a useful addition to the available differential peak detection methods to study chromatin and performs especially well when applied to study differential chromatin states in ATAC-seq data.

4.
Gut ; 70(2): 309-318, 2021 02.
Article in English | MEDLINE | ID: mdl-32839200

ABSTRACT

OBJECTIVE: Gut microbiota and diet are known to contribute to human metabolism. We investigated whether the metagenomic gut microbiota composition and function changes over pregnancy are related to gestational diabetes mellitus (GDM) and can be modified by dietary supplements, fish oil and/or probiotics. DESIGN: The gut microbiota of 270 overweight/obese women participating in a mother-infant clinical study were analysed with metagenomics approach in early (mean gestational weeks 13.9) and late (gestational weeks 35.2) pregnancy. GDM was diagnosed with a 2 hour 75 g oral glucose tolerance test. RESULTS: Unlike women with GDM, women without GDM manifested changes in relative abundance of bacterial species over the pregnancy, particularly those receiving the fish oil + probiotics combination. The specific bacterial species or function did not predict the onset of GDM nor did it differ according to GDM status, except for the higher abundance of Ruminococcus obeum in late pregnancy in the combination group in women with GDM compared with women without GDM. In the combination group, weak decreases over the pregnancy were observed in basic bacterial housekeeping functions. CONCLUSIONS: The specific gut microbiota species do not contribute to GDM in overweight/obese women. Nevertheless, the GDM status may disturb maternal gut microbiota flexibility and thus limit the capacity of women with GDM to respond to diet, as evidenced by alterations in gut microbiota observed only in women without GDM. These findings may be important when considering the metabolic complications during pregnancy, but further studies with larger populations are called for to verify the findings.


Subject(s)
Diabetes, Gestational/diet therapy , Gastrointestinal Microbiome/genetics , Metagenome/genetics , Obesity, Maternal/diet therapy , Adult , Diabetes, Gestational/etiology , Diabetes, Gestational/microbiology , Double-Blind Method , Female , Fish Oils/therapeutic use , Glucose Tolerance Test , Humans , Metagenomics/methods , Obesity, Maternal/complications , Obesity, Maternal/microbiology , Pregnancy , Probiotics/therapeutic use
5.
Transl Androl Urol ; 9(3): 1120-1134, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32676396

ABSTRACT

BACKGROUND: Patient-derived xenografts (PDXs) are considered to better recapitulate the histopathological and molecular heterogeneity of human cancer than other preclinical models. Despite technological advances, PDX models from hormone naïve primary prostate cancer are scarce. We performed a detailed analysis of PDX methodology using a robust subcutaneous model and fresh tissues from patients with primary hormone naïve prostate cancer. METHODS: Clinical prostate tumor specimens (n=26, Gleason score 6-10) were collected from robotic-assisted laparoscopic radical prostatectomies at Turku University Hospital (Turku, Finland), cut into pieces, and implanted subcutaneously into 84 immunodeficient mice. Engraftments and the adjacent material from prostatic surgical specimens were compared using histology, immunohistochemistry and DNA sequencing. RESULTS: The probability of a successful engraftment correlated with the presence of carcinoma in the implanted tissue. Tumor take rate was 41%. Surprisingly, mouse hormone supplementation inhibited tumor take rate, whereas the degree of mouse immunodeficiency did not have an effect. Histologically, the engrafted tumors closely mimicked their parental tumors, and the Gleason grades and copy number variants of the engraftments were similar to those of their primary tumors. Expression levels of androgen receptor, prostate-specific antigen, and keratins were retained in engraftments, and a detailed genomic analysis revealed high fidelity of the engraftments with their corresponding primary tumors. However, in the second or third passage of tumors, the carcinoma areas were almost completely replaced by benign tissue with frequent degenerative or metaplastic changes. CONCLUSIONS: Subcutaneous primary prostate engraftments preserve the phenotypic and genotypic landscape. Thus, they serve a potential model for personalized medicine and preclinical research but their use may be limited to the first passage.

SELECTION OF CITATIONS
SEARCH DETAIL
...