Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 105: 106867, 2024 May.
Article in English | MEDLINE | ID: mdl-38581799

ABSTRACT

In this initial study, the impact of thermosonication as an alternative to the traditional fusion in Brazilian cheese spread (Requeijão Cremoso) manufacture was investigated. The effect of ultrasound (US) power was evaluated considering various aspects such as gross composition, microstructure, texture, rheology, color, fatty acid composition, and volatile compounds. A 13 mm US probe operating at 20 kHz was used. The experiment involved different US power levels (200, 400, and 600 W) at 85 °C for 1 min, and results were compared to the conventional process in the same conditions (85 °C for 1 min, control treatment). The texture became softer as ultrasound power increased from 200 to 600 W, which was attributed to structural changes within the protein and lipid matrix. The color of the cheese spread also underwent noticeable changes for all US treatments, and treatment at 600 W resulted in increased lightness but reduced color intensity. Moreover, the fatty acid composition of the cheese spread showed variations with different US power, with samples treated at 600 W showing lower concentrations of saturated and unsaturated fatty acids, as well as lower atherogenicity and thrombogenicity indexes, indicating a potentially healthier product. Volatile compounds were also influenced by US, with less compounds being identified at higher powers, especially at 600 W. This could indicate possible degradation, which should be evaluated in further studies regarding US treatment effects on consumer perception. Hence, this initial work demonstrated that thermosonication might be interesting in the manufacture of Brazilian cheese spread, since it can be used to manipulate the texture, color and aroma of the product in order to improve its quality parameters.


Subject(s)
Cheese , Cheese/analysis , Sonication/methods , Brazil , Food Handling/methods , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Fatty Acids/chemistry , Color , Temperature
2.
Biotechnol Adv ; 37(2): 319-339, 2019.
Article in English | MEDLINE | ID: mdl-30664944

ABSTRACT

Nowadays, food, cosmetic, environmental and pharmaceutical fields are searching for alternative processes to obtain their major products in a more sustainable way. This fact is related to the increasing demand from the consumer market for natural products to substitute synthetic additives. Industrial biotechnology appears as a promising area for this purpose; however, the success of its application is highly dependent of the availability of a suitable microorganism. To overcome this drawback, the isolation of microorganisms from diverse sources, including fermented food, adverse environments, contaminated samples or agro-industrial wastes is an important approach that can provide a more adaptable strain able to be used as biocatalyst and that exhibit resistance to industrial conditions and high yields/productivities in biotechnological production of natural compounds. The aim of this review is to provide a solid set of information on the state of the art of isolation and screening studies for obtaining novel biocatalysts able to produce natural compounds, focusing in aromas, biosurfactants, polysaccharides and microbial oils.


Subject(s)
Biological Products/metabolism , Biotechnology/trends , Industrial Microbiology/trends , Biological Products/chemistry , Enzymes/isolation & purification , Fermentation , Industrial Waste
3.
Appl Microbiol Biotechnol ; 101(21): 7789-7809, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28921339

ABSTRACT

The use of yeasts in bioprocesses can be considered one of the most relevant strategies in industrial biotechnology, and their potential is recognized due to the ability of these microorganisms for production of diverse value-added compounds. Yeasts from Ustilaginaceae family have been highlighted in the last years as a promising source of industrial interesting compounds, including enzymes, sugars, lipids, organic acids, and biosurfactants. These compounds may exhibit various applications in pharmaceutical, cosmetic, food, medical, and environmental fields, increasing the scientific attention in the study of ustilaginomycetous for biotechnological purposes. In this mini-review, we provide a comprehensive overview about the biotechnological use of yeasts from Ustilaginaceae family to produce value-added compounds, focusing in recent trends, characteristics of processes currently developed, new opportunities, and potential applications.


Subject(s)
Biological Factors/genetics , Biological Factors/metabolism , Biotechnology/methods , Industrial Microbiology/methods , Ustilaginales/genetics , Ustilaginales/metabolism , Biotechnology/trends , Industrial Microbiology/trends
4.
Appl Microbiol Biotechnol ; 101(5): 1805-1817, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28105487

ABSTRACT

Products that bear the label "natural" have gained more attention in the marketplace. In this approach, the production of aroma compounds through biotransformation or bioconversion has been receiving more incentives in economic and research fields. Among the substrates used in these processes, terpenes can be highlighted for their versatility and low cost; some examples are limonene, α-pinene, and ß-pinene. This work focused on the biotransformation of the two bicyclic monoterpenes, α-pinene and ß-pinene; the use of different biocatalysts; the products obtained; and the conditions employed in the process.


Subject(s)
Aspergillus/metabolism , Bacteria/metabolism , Bridged Bicyclo Compounds/metabolism , Cyclohexenes/metabolism , Monoterpenes/metabolism , Penicillium/metabolism , Terpenes/metabolism , Bicyclic Monoterpenes , Biotransformation , Food Additives/chemistry , Limonene , Odorants , Oils, Volatile/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...