Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34996869

ABSTRACT

NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze ß-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate ß-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue ßLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cß and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.


Subject(s)
Alanine/analogs & derivatives , Catalytic Domain , Crystallography, X-Ray/methods , Magnetic Resonance Spectroscopy/methods , Tryptophan Synthase/chemistry , Catalysis , Indoles , Magnetic Resonance Imaging , Nuclear Magnetic Resonance, Biomolecular , Pyridoxal Phosphate/metabolism , Tryptophan Synthase/metabolism
2.
J Am Chem Soc ; 144(5): 2137-2148, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35089701

ABSTRACT

This report investigates the homotetrameric membrane protein structure of the S31N M2 protein from Influenza A virus in the presence of a high molar ratio of lipid. The structured regions of this protein include a single transmembrane helix and an amphipathic helix. Two structures of the S31N M2 conductance domain from Influenza A virus have been deposited in the Protein Data Bank (PDB). These structures present different symmetries about the channel main axis. We present new magic angle spinning and oriented sample solid-state NMR spectroscopic data for S31N M2 in liquid crystalline lipid bilayers using protein tetramer:lipid molar ratios ranging from 1:120 to 1:240. The data is consistent with an essentially 4-fold-symmetric structure very similar to the M2 WT structure that also has a single conformation for the four monomers, except at the His37 and Trp41 functional sites when characterized in samples with a high molar ratio of lipid. While detergent solubilization is well recognized today as a nonideal environment for small membrane proteins, here we discuss the influence of a high lipid to protein ratio for samples of the S31N M2 protein to stabilize an essentially 4-fold-symmetric conformation of the M2 membrane protein. While it is generally accepted that the chemical and physical properties of the native environment of membrane proteins needs to be reproduced judiciously to achieve the native protein structure, here we show that not only the character of the emulated membrane environment is important but also the abundance of the environment is important for achieving the native structure. This is a critical finding as a membrane protein spectroscopist's goal is always to generate a sample with the highest possible protein sensitivity while obtaining spectra of the native-like structure.


Subject(s)
Influenza A virus/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Amino Acid Sequence , Binding Sites , Gene Expression Regulation, Viral , Humans , Lipid Bilayers , Membrane Proteins , Models, Molecular , Protein Conformation
3.
J Biol Chem ; 296: 100557, 2021.
Article in English | MEDLINE | ID: mdl-33744283

ABSTRACT

Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.


Subject(s)
Databases, Protein , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Databases, Protein/history , History, 20th Century , History, 21st Century , Protein Conformation , Structure-Activity Relationship
4.
Biomolecules ; 10(7)2020 07 17.
Article in English | MEDLINE | ID: mdl-32709016

ABSTRACT

The Droserasins, aspartic proteases from the carnivorous plant Drosera capensis, contain a 100-residue plant-specific insert (PSI) that is post-translationally cleaved and independently acts as an antimicrobial peptide. PSIs are of interest not only for their inhibition of microbial growth, but also because they modify the size of lipid vesicles and strongly interact with biological membranes. PSIs may therefore be useful for modulating lipid systems in NMR studies of membrane proteins. Here we present the expression and biophysical characterization of the Droserasin 1 PSI (D1 PSI.) This peptide is monomeric in solution and maintains its primarily α -helical secondary structure over a wide range of temperatures and pH values, even under conditions where its three disulfide bonds are reduced. Vesicle fusion assays indicate that the D1 PSI strongly interacts with bacterial and fungal lipids at pH 5 and lower, consistent with the physiological pH of D. capensis mucilage. It binds lipids with a variety of head groups, highlighting its versatility as a potential stabilizer for lipid nanodiscs. Solid-state NMR spectra collected at a field strength of 36 T, using a unique series-connected hybrid magnet, indicate that the peptide is folded and strongly bound to the membrane. Molecular dynamics simulations indicate that the peptide is stable as either a monomer or a dimer in a lipid bilayer. Both the monomer and the dimer allow the passage of water through the membrane, albeit at different rates.


Subject(s)
Carnivorous Plant/metabolism , Drosera/metabolism , Lipid Bilayers/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Carnivorous Plant/chemistry , Cell Membrane/metabolism , Drosera/chemistry , Membrane Fusion , Molecular Dynamics Simulation , Pore Forming Cytotoxic Proteins/analysis , Protein Conformation, alpha-Helical , Protein Multimerization
5.
Proc Natl Acad Sci U S A ; 117(22): 11908-11915, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32414918

ABSTRACT

Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by 17O NMR spectroscopy at 35.2 T (or 1,500 MHz for 1H) and computational studies. While backbone 15N spectra clearly indicate structural symmetry between the two subunits, single site 17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The 17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+ affinity between two binding sites that are ∼24 Šapart. The 17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the 17O nucleus to its chemical environment.


Subject(s)
Gramicidin/chemistry , Ion Channels/chemistry , Magnetic Resonance Spectroscopy/methods , Water/chemistry , Binding Sites , Biophysical Phenomena , Cellular Microenvironment , Computational Biology , Hydrogen Bonding , Ion Channels/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Oxygen Isotopes/metabolism
6.
J Magn Reson ; 301: 109-118, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30870670

ABSTRACT

Powered resistive and resistive-superconductive hybrid magnets can reach fields higher than superconducting NMR magnets but lack the field homogeneity and temporal stability needed for high resolution NMR. Due to field fluctuations in powered magnets, commercially available mapping systems fail to produce maps of these magnets with sufficient reproducibility, thus hampering attempts to improve homogeneity of the field they generate. Starting with a commercial mapper, we built a mapping system which uses a two-channel (measurement + reference) mapper probe. We used this system to map and then to shim two magnets of Florida Bitter type at the National High Magnetic Field Laboratory in Tallahassee, FL. With a combination of passive (ferromagnetic) and active shims we achieved 2.3 ppm homogeneity in 1 cm diameter spherical volume (dsv) at 25.0 T in the Keck resistive magnet, and 0.9 ppm homogeneity in 1 cm dsv at 23.5, 28.2, and 35.2 T in the series-connected resistive-superconductive hybrid (SCH) magnet.

7.
Biophys J ; 116(6): 1075-1084, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819568

ABSTRACT

Protein dynamics in crowded environments is important for understanding protein functions in vivo and is especially relevant for membrane proteins because of the roles of protein-protein interactions in membrane protein functions and their regulation. Here, using solid-state NMR spectroscopy in combination with coarse-grained molecular dynamics simulations, we report that the rotational correlation time for the transmembrane domain of the influenza A M2 proton channel in lipid bilayers increases dramatically at an elevated protein/lipid ratio. This increase is attributable to persistent protein-protein interactions, thus revealing for the first time, to the best of our knowledge, extensive cluster formation of the M2 tetrameric channel. Such clustering appears to have direct biological relevance during budding of the nascent influenza virus, which does not use the endosomal sorting complexes required for transport machinery. Indeed, initial coarse-grained molecular dynamics simulations of the longer M2 construct known as the conductance domain suggest clustering-induced membrane curvature formation.


Subject(s)
Influenza A virus/physiology , Lipid Metabolism , Viral Matrix Proteins/metabolism , Virus Release , Amino Acid Sequence , Diffusion , Models, Molecular , Protein Conformation , Rotation , Viral Matrix Proteins/chemistry
8.
Biochimie ; 156: 109-117, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30326255

ABSTRACT

Sticholysin I and II (Sts: St I and St II) are proteins of biomedical interest that form pores upon the insertion of their N-terminus in the plasma membrane. Peptides spanning the N-terminal residues of StI (StI1-31) or StII (StII1-30) can mimic the permeabilizing ability of these toxins, emerging as candidates to rationalize their potential biomedical applications. These peptides have different activities that correlate with their hydrophobicity. However, it is not clear how this property contributes to peptide folding in solution or upon binding to membranes. Here we compared the conformational properties of these peptides and shorter versions lacking the hydrophobic segment 1-11 of StI (StI12-31) or 1-10 of StII (StII11-30). Folding of peptides was assessed in solution and in membrane mimetic systems and related with their ability to bind to membranes and to permeabilize lipid vesicles. Our results suggest that the differences in activity among peptides could be ascribed to their different folding propensity and different membrane binding properties. In solution, StII1-30 tends to acquire α-helical conformation coexisting with self-associated structures, while StI1-31 remains structureless. Both peptides fold as α-helix in membrane; but StII1-30 also self-associates in the lipid environment, a process that is favored by its higher affinity for membrane. We stress the contribution of the non-polar/polar balance of the 1-10 amino acid sequence of the peptides as a determining factor for different self-association capabilities. Such difference in hydrophobicity seems to determine the molecular path of peptides folding upon binding to membranes, with an impact in their permeabilizing activity. This study contributes to a better understanding of the molecular mechanisms underlying the permeabilizing activity of Sts N-terminal derived peptides, with connotation for the exploitation of these small molecules as alternative of the full-length toxins in clinical settings.


Subject(s)
Cnidarian Venoms/chemistry , Membranes, Artificial , Protein Folding , Organic Chemicals/chemistry , Protein Structure, Secondary , Structure-Activity Relationship
9.
J Magn Reson ; 284: 125-136, 2017 11.
Article in English | MEDLINE | ID: mdl-28890288

ABSTRACT

The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7Li lock sample doped with paramagnetic MnCl2. The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Magnets , Chlorides , Electromagnetic Fields , Equipment Design , Isotopes , Lithium , Manganese Compounds , Superconductivity
10.
J Magn Reson ; 239: 100-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24412099

ABSTRACT

NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.


Subject(s)
Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Anti-Bacterial Agents/chemistry , Biophysics , Crystallography, X-Ray , Fatty Acids/chemistry , Gramicidin/chemistry , Influenza A virus/chemistry , Lipid Bilayers , Models, Molecular , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...