Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(51): e2303713120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38091291

ABSTRACT

The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.


Subject(s)
Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases , Mice , Animals , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Cyclophilins/genetics , Cyclophilins/metabolism , Peptidyl-Prolyl Isomerase F , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Calcium/metabolism
2.
Molecules ; 28(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36838742

ABSTRACT

In this work, a NIR emitting dye, p-toluenesulfonate (IR-813) was explored as a model precursor to develop red emissive carbon dots (813-CD) with solvatochromic behavior with a red-shift observed with increasing solvent polarity. The 813-CDs produced had emission peaks at 610 and 698 nm, respectively, in water with blue shifts of emission as solvent polarity decreased. Subsequently, 813-CD was synthesized with increasing nitrogen content with polyethyleneimine (PEI) to elucidate the change in band gap energy. With increased nitrogen content, the CDs produced emissions as far as 776 nm. Additionally, a CD nanocomposite polyvinylpyrrolidone (PVP) film was synthesized to assess the phenomenon of solid-state fluorescence. Furthermore, the CDs were found to have electrochemical properties to be used as an additive doping agent for PVP film coatings.


Subject(s)
Carbon , Quantum Dots , Solvents/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Nitrogen/chemistry
3.
Nanoscale ; 15(9): 4448-4456, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36752225

ABSTRACT

A two-component stapling strategy is used to covalently tether a new class of water-soluble supramolecular polymers built from bay-functionalized perylene bisimide (PBI) units. By leveraging a novel combined strategy where excitonic coupling and fluorescence data are exploited as spectroscopic reporters, structural design principles are established to form light-harvesting superstructures whose ground-state electronic properties are not sensitive to solvation environments. Moreover, we interrogate the structural properties of stapled superstructures by capitalizing on the drastic changes in fluorescence quantum yields against parent supramolecular assemblies. In essence, our work shows that the combination of excitonic coupling measurements and photoluminescence experiments delineates a more accurate understanding of the design principles required to limit the degree of structural defects and magnify short- and long-range electronic couplings between redox-active units in this new class of solvated nanoscale objects. These results highlight that the fragile conformation of non-covalent assemblies, which are regulated by weak secondary interactions, can be preserved by post-assembly modification of preformed supramolecular polymers. These synthetic and spectroscopic principles can in turn be codified as experimental handles to parameterize the optoelectronic properties of light-harvesting nanoscale objects.

4.
J Colloid Interface Sci ; 637: 193-206, 2023 May.
Article in English | MEDLINE | ID: mdl-36701865

ABSTRACT

Nucleus targeting is tremendously important in cancer therapy. Cationic carbon dots (CCDs) are potential nanoparticles which might enter cells and penetrate nuclear membranes. Although some CCDs have been investigated in nucleus targeting and applied in nuclear imaging, the CCDs derived from drugs, that are able to target the nucleus, bind with DNA and inhibit the growth of cancer cells have not been reported. In this project, 1, 2, 4, 5-benzenetetramine (Y15, a focal adhesion kinase inhibitor) derived cationic carbon dots (Y15-CDs) were prepared via a hydrothermal approach utilizing Y15, folic acid and 1,2-ethylenediamine as precursors. Based on the structural, optical, and morphologic characterizations, Y15-CDs possess rich amine groups and nitrogen in structure, an excitation-dependent photoluminescence emission, and a small particle size of 2 to 4 nm. The DNA binding experiments conducted through agarose gel electrophoresis, UV-vis absorption, fluorescence emission, and circular dichroism spectroscopies, prove that Y15-CDs might bind with DNA via electrostatic interactions and partially intercalative binding modes. In addition, the cell imaging and cytotoxicity studies in human foreskin fibroblasts (HFF), prostate cancer (PC3) and osteosarcoma cells (U2OS) indicate the nucleus targeting and anticancer abilities of Y15-CDs. Most interestingly, Y15-CDs exhibit a higher cytotoxicity to cancer cells (PC3 and U2OS) than to normal cells (HFF), inferring that Y15-CDs might be potentially applied in cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Quantum Dots , Male , Humans , Quantum Dots/chemistry , Carbon/pharmacology , Carbon/chemistry , Nanoparticles/chemistry , Spectrometry, Fluorescence , DNA/metabolism , Fluorescent Dyes/chemistry
5.
Langmuir ; 38(14): 4266-4275, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35353503

ABSTRACT

The confinement of π-conjugated chromophores on silicon (Si) electrode surfaces is a powerful approach to engineer electroresponsive monolayers relevant to microelectronics, electrocatalysis, and information storage and processing. While common strategies to functionalize Si interfaces exploit molecularly dissolved building blocks, only a handful number of studies have leveraged the structure-function relationships of π-aggregates to tune the electronic structures of hybrid monolayers at Si interfaces. Herein, we show that the semiconducting properties of n-type monolayers constructed on Si electrodes are intimately correlated to the initial aggregation state of π-conjugated chromophore precursors derived from bay-substituted perylene bisimide (PBI) units. Specifically, our study unravels that for n-type monolayers engineered using PBI π-aggregates, the cathodic reduction potentials required to inject negative charge carriers into the conduction bands can be stabilized by 295 mV through reversible switching of the maximum anodic potential (MAP) that is applied during the oxidative cycles (+0.5 or +1.5 V vs Ag/AgCl). This redox-assisted stabilization effect is not observed with n-type monolayers derived from molecularly dissolved PBI cores and monolayers featuring a low surface density of the redox-active probes. These findings unequivocally point to the crucial role played by PBI π-aggregates in modulating the conduction band energies of n-type monolayers where a high MAP of +1.5 V enables the formation of electronic trap states that facilitate electron injection when sweeping back to cathodic potentials. Because the structure-function relationships of PBI π-aggregates are shown to modulate the semiconducting properties of hybrid n-type monolayers constructed at Si interfaces, our results hold promising opportunities to develop redox-switchable monolayers for engineering nonvolatile electronic memory devices.

6.
ACS Appl Mater Interfaces ; 13(3): 4665-4675, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33443396

ABSTRACT

The functionalization of silicon electrodes with π-conjugated chromophores opens new avenues to engineer hybrid semiconducting interfaces relevant to information storage and processing. Notably, molecularly dissolved π-conjugated units, such as ferrocene derivatives, are traditionally exploited as building blocks to construct well-defined interfaces that establish electrochemically addressable platforms with which to investigate electron transfer properties and charge storage capabilities. In contrast, planar π-conjugated building blocks such as naphthalene diimide (NDI) cores enable the formation of solvated aggregates equipped with emergent electronic structures not manifested by the parent, molecularly dissolved building blocks. To interrogate the extent to which the aggregated states of π-conjugated chromophores can be leveraged to regulate the n-type semiconducting properties of functionalized electrodes, we have devised an amphiphilic rylene core (NDI) that demonstrates a non-negligible degree of aggregation in an aqueous medium. Characterization of the electronic structures of the NDI-derived aggregates using a combination of electrochemistry, reductive titration experiments, and spectroelectrochemistry unveils the existence of π-anion stacks, the formation of which is contingent on the initial concentration of NDI building blocks. We show that grafting n-doped NDI aggregates on silicon electrode precursors equipped with a high density of anchoring groups by means of "click" reaction enables the formation of the hybrid Si-NDI electrode (Si-NDI-15@1) that facilitates electron injection by more than 400 mV when compared to Si interfaces constructed from molecularly dissolved NDI units. Furthermore, the engineering of a Si precursor surface characterized by a low density of anchoring groups provides additional proof to highlight that the potentiometric properties recorded for Si-NDI-15@1 originate from NDI units, evidencing a non-negligible degree of aggregation. The present work delivers tools to manipulate the potentiometric properties of functionalized electrodes by leveraging on the electronic structures of aggregated, π-conjugated precursors.

7.
Phys Chem Chem Phys ; 23(4): 2703-2714, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33491689

ABSTRACT

The development of supramolecular tools to modulate the excitonic properties of non-covalent assemblies paves the way to engineer new classes of semicondcuting materials relevant to flexible electronics. While controlling the assembly pathways of organic chromophores enables the formation of J-like and H-like aggregates, strategies to tailor the excitonic properties of pre-assembled aggregates through post-modification are scarce. In the present contribution, we combine supramolecular chemistry with redox chemistry to modulate the excitonic properties and solid-state morphologies of aggregates built from stacks of water-soluble perylene diimide building blocks. The n-doping of initially formed aggregates in an aqueous medium is shown to produce π-anion stacks for which spectroscopic properties unveil a non-negligible degree of electron-electron interactions. Oxidation of the n-doped intermediates produces metastable aggregates where free exciton bandwidths (ExBW) increase as a function of time. Kinetic data analysis reveals that the dynamic increase of free exciton bandwidth is associated with the formation of superstructures constructed by means of a nucleation-growth mechanism. By designing different redox-assisted assembly pathways, we highlight that the sacrificial electron donor plays a non-innocent role in regulating the structure-function properties of the final superstructures. Furthermore, supramolecular architectures formed via a nucleation-growth mechanism evolve into ribbon-like and fiber-like materials in the solid-state, as characterized by SEM and HRTEM. Through a combination of ground-state electronic absorption spectroscopy, electrochemistry, spectroelectrochemistry, microscopy, and modeling, we show that redox-assisted assembly provides a means to reprogram the structure-function properties of pre-assembled aggregates.

8.
Nat Cancer ; 1(3): 315-328, 2020 03.
Article in English | MEDLINE | ID: mdl-32776015

ABSTRACT

Doxorubicin remains an essential component of many cancer regimens, but its use is limited by lethal cardiomyopathy, which has been difficult to target, owing to pleiotropic mechanisms leading to apoptotic and necrotic cardiac cell death. Here we show that BAX is rate-limiting in doxorubicin-induced cardiomyopathy and identify a small-molecule BAX inhibitor that blocks both apoptosis and necrosis to prevent this syndrome. By allosterically inhibiting BAX conformational activation, this compound blocks BAX translocation to mitochondria, thereby abrogating both forms of cell death. When co-administered with doxorubicin, this BAX inhibitor prevents cardiomyopathy in zebrafish and mice. Notably, cardioprotection does not compromise the efficacy of doxorubicin in reducing leukemia or breast cancer burden in vivo, primarily due to increased priming of mitochondrial death mechanisms and higher BAX levels in cancer cells. This study identifies BAX as an actionable target for doxorubicin-induced cardiomyopathy and provides a prototype small-molecule therapeutic.


Subject(s)
Cardiomyopathies , Zebrafish , Animals , Apoptosis/physiology , Cardiomyopathies/chemically induced , Doxorubicin/adverse effects , Mice , Necrosis , Zebrafish/metabolism , bcl-2-Associated X Protein
9.
Angew Chem Int Ed Engl ; 59(19): 7487-7493, 2020 May 04.
Article in English | MEDLINE | ID: mdl-31984605

ABSTRACT

Locking-in the conformation of supramolecular assemblies provides a new avenue to regulate the (opto)electronic properties of robust nanoscale objects. In the present contribution, we show that the covalent tethering of a perylene bisimide (PBI)-derived supramolecular polymer with a molecular locker enables the formation of a locked superstructure equipped with emergent structure-function relationships. Experiments that exploit variable-temperature ground-state electronic absorption spectroscopy unambiguously demonstrate that the excitonic coupling between nearest neighboring units in the tethered superstructure is preserved at a temperature (371 K) where the pristine, non-covalent assembly exists exclusively in a molecularly dissolved state. A close examination of the solid-state morphologies reveals that the locked superstructure engenders the formation of hierarchical 1D materials which are not achievable by unlocked assemblies. To complement these structural attributes, we further demonstrate that covalently tethering a supramolecular polymer built from PBI subunits enables the emergence of electronic properties not evidenced in non-covalent assemblies. Using cyclic voltammetry experiments, the elucidation of the potentiometric properties of the locked superstructure reveals a 100-mV stabilization of the conduction band energy when compared to that recorded for the non-covalent assembly.

10.
J Phys Chem B ; 123(51): 11026-11041, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31774281

ABSTRACT

The surface coverage and molecular composition of redox-active molecules anchored on conductive surfaces regulate the kinetic and thermodynamic parameters of charge transfer reactions, providing a means to tune the electrochemical properties of hybrid materials. Herein, anchoring strategies and structural properties of redox-active probes, derived from ferrocene (Fc) and naphthalene diimide (NDI), are shown to regulate the electrochemical properties of functionalized p-doped Si(111) surfaces. Covalent functionalization of hydrogen-terminated Si(111) surfaces with Fc and NDI affords redox-active hybrid interfaces characterized through microscopy, spectroscopy, and voltammetry methods. Molecular design and synthetic grafting strategies modulate the electrochemical properties of the Fc-functionalized Si surfaces with a much higher (ca. 25 times) surface coverage (1.25 × 10-10 mol cm-2) for one-step photografting compared to divergent synthetic routes. Interestingly, the thermal grafting of an alkadiyne followed by "click" reaction with ferrocenyl-azide leads to one of the highest surface coverages (9.97 × 10-10 mol cm-2) of organo-iron reported and a significant anodic shift of the half-potential (>350 mV) compared to photografting methods. Similar experiments with NDI units exhibited electrochemical properties that diverge from those recorded for NDI in solution. The results presented herein offer access to novel redox-active Si interfaces that evidence tunable electrochemical properties of potential interest for microelectronic applications.

11.
Cardiovasc Res ; 113(8): 892-905, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28371893

ABSTRACT

AIMS: Tissue transglutaminase (tTG) is induced in injured and remodelling tissues, and modulates cellular phenotype, while contributing to matrix cross-linking. Our study tested the hypothesis that tTG may be expressed in the pressure-overloaded myocardium, and may regulate cardiac function, myocardial fibrosis and chamber remodelling. METHODS AND RESULTS: In order to test the hypothesis, wild-type and tTG null mice were subjected to pressure overload induced through transverse aortic constriction. Moreover, we used isolated cardiac fibroblasts and macrophages to dissect the mechanisms of tTG-mediated actions. tTG expression was upregulated in the pressure-overloaded mouse heart and was localized in cardiomyocytes, interstitial cells, and in the extracellular matrix. In contrast, expression of transglutaminases 1, 3, 4, 5, 6, 7 and FXIII was not induced in the remodelling myocardium. In vitro, transforming growth factor (TGF)-ß1 stimulated tTG synthesis in cardiac fibroblasts and in macrophages through distinct signalling pathways. tTG null mice had increased mortality and enhanced ventricular dilation following pressure overload, but were protected from diastolic dysfunction. tTG loss was associated with a hypercellular cardiac interstitium, reduced collagen cross-linking, and with accentuated matrix metalloproteinase (MMP)2 activity in the pressure-overloaded myocardium. In vitro, tTG did not modulate TGF-ß-mediated responses in cardiac fibroblasts; however, tTG loss was associated with accentuated proliferative activity. Moreover, when bound to the matrix, recombinant tTG induced synthesis of tissue inhibitor of metalloproteinases (TIMP)-1 through transamidase-independent actions. CONCLUSIONS: Following pressure overload, endogenous tTG mediates matrix cross-linking, while protecting the remodelling myocardium from dilation by exerting matrix-preserving actions.


Subject(s)
Extracellular Matrix/metabolism , GTP-Binding Proteins/metabolism , Myocardium/metabolism , Transglutaminases/metabolism , Ventricular Remodeling/physiology , Animals , Female , Fibroblasts/metabolism , Fibrosis/metabolism , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Knockout , Myocytes, Cardiac/metabolism , Pressure , Protein Glutamine gamma Glutamyltransferase 2 , Transforming Growth Factor beta/metabolism
12.
Acta méd. domin ; 12(1): 11-5, ene.-feb. 1990. ilus, tab
Article in Spanish | LILACS | ID: lil-103554

ABSTRACT

Se revisaron diez casos de carcinoma de vulva, los cuales fueron confirmados por biopsia. Se realizó un total de 13 biopsias de vulva. El diagnóstico clínico correspondió con el del patólogo de manera total em 11 casos para un 84% de manera parcial en 2 casos para un 16%. Las manifestaciones clínicas más frecuentes fueron: ulceración 50%, prurito 50% y leucoplaquia 40%


Subject(s)
Adult , Middle Aged , Humans , Female , History, 20th Century , Vulvar Neoplasms/pathology , Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL
...