Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011635

ABSTRACT

BACKGROUND: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in cardiac failure if left untreated. We hypothesized that the tail-anchored protein dysferlin with multiple Ca2+-binding C2-domains is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. OBJECTIVE: To reveal the impact of the membrane fusion and repair protein dysferlin on TAT network stabilization and proliferation necessary for the hypertrophic growth of cardiomyocytes. METHODS AND RESULTS: Super-resolution light and electron microscopy of mouse cardiomyocytes identified a specific localization of dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Mass spectrometry was used to characterize the cardiac dysferlin interactome, thereby identifying a novel protein interaction with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. While the dysferlin knockout caused a mild progressive phenotype of dilated cardiomyopathy in the mouse heart, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging demonstrated a profound reorganization of the TAT network in wild-type left-ventricular myocytes post-transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.

2.
J Mol Cell Cardiol ; 173: 1-15, 2022 12.
Article in English | MEDLINE | ID: mdl-36084744

ABSTRACT

The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS.


Subject(s)
Aortic Valve Stenosis , Heart Transplantation , Heart Valve Prosthesis Implantation , Humans , Heart Valve Prosthesis Implantation/methods , Stroke Volume , Microscopy , Proteomics , Ryanodine Receptor Calcium Release Channel , Tissue Donors , Aortic Valve , Ventricular Function, Left/physiology , Biopsy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...