Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 302: 134708, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35490761

ABSTRACT

Interfacing an electrocatalyst with photoactive semiconductor surfaces is an emerging strategy to enhance the photocathode performance for the solar water reduction reaction. Herein, a core-shell heterostructure photocathode consisting of vanadium disulfide (VS2) as a 2D layered electrocatalyst directly deposited on silicon nanowire (Si NWs) surface is realized via single-step chemical vapor deposition towards efficient hydrogen evolution under solar irradiation. In an electrochemical study, 2D VS2/Si NWs photocathode exhibits a saturated photocurrent density (17 mA cm-2) with a maximal photoconversion efficiency of 10.8% at -0.53 V vs. RHE in neutral electrolyte condition (pH∼7). Under stimulated irradiation, the heterostructure photocathode produces a hydrogen gas evolution around 23 µmol cm-2 h-1 (at 0 V vs. RHE). Further, electrochemical impedance spectroscopy (EIS) analysis reveals that the high performance of the core-shell photocathode is associated with the generation of the high density of electron-hole pairs and the separation of photocarriers with an extended lifetime. Density functional theory calculations substantiate that core-shell photocathodes are active at very low Gibbs free energy (ΔGH*) with abundant hydrogen evolution reaction (HER) active sulphur sites. The charge density difference plot with Bader analysis of heterostructure reveals the accumulation of electrons on the sulphur sites via modulating the electronic band structure near the interface. Thus, facilitates the barrier-free charge transport owing to the synergistic effect of Si NWs@2D-VS2 core-shell hybrid photocatalyst for enhanced solar water reduction performance.

2.
RSC Adv ; 10(31): 18315-18322, 2020 May 10.
Article in English | MEDLINE | ID: mdl-35517221

ABSTRACT

In the present study, a chemical precipitation method is adopted to synthesize bismuth vanadate nanoparticles. The calcination temperature dependent photocatalytic and antibacterial activities of BiVO4 nanoparticles are examined. The structural analysis evidences the monoclinic phase of BiVO4 nanoparticles, where the grain size increases with calcination temperature. Interestingly, BiVO4 nanoparticles calcined at 400 °C exhibit superior photocatalytic behaviour against methylene blue dye (K = 0.02169 min-1) under natural solar irradiation, which exhibits good stability for up to three cycles. The evolution of antibacterial activity studies using a well diffusion assay suggest that the BiVO4 nanoparticles calcined at 400 °C can act as an effective growth inhibitor of pathogenic Gram-negative (P. aeruginosa & A. baumannii) and Gram-positive bacteria (S. aureus).

SELECTION OF CITATIONS
SEARCH DETAIL
...