Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(8): 3735-3748, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38335260

ABSTRACT

Cu2Se-based thermoelectric materials exhibit high dimensionless figure of merit (zT) values at elevated temperatures (900-1000 K) but relatively lower zT values at intermediate temperatures, approximately 500 K. We synthesized a series of polycrystalline Cu2Se0.96Te0.04-xIx/Cu2O composites (where x = 0.00, 0.01, 0.02, and 0.03) using an energy-efficient synthesis method conducted at room temperature, followed by heat treatment at 923 K for 6 h. X-ray diffraction (XRD) analysis confirmed the monoclinic crystal structure of the α phase. The introduction of iodine doping at Te sites introduced electron carriers to p-type Cu2Se0.96Te0.04, reducing the hole carrier concentration. Consequently, the electrical resistivity increased, and the thermopower exhibited a significant increase. The incorporation of electron carriers into the p-type Cu2Se0.96Te0.04/Cu2O composites resulted in an enhanced power factor within the medium-temperature range. Specifically, at 500 K, the Cu2Se0.96Te0.02I0.02/Cu2O (x = 0.02) composites demonstrated the highest power factor among the series of Cu2Se0.96Te0.04-xIx/Cu2O composites, measuring 9.1 µW cm-1 K-2. According to the weighted mobility analysis, it is clear that the x = 0.02 composite possesses the optimal carrier concentration, which accounts for its superior power factor compared to the other composites in the series. Furthermore, the Cu2Se0.96Te0.02I0.02/Cu2O composites and Cu2Se0.96Te0.04/Cu2O composites displayed zT values of 0.49 and 0.33, respectively, at 550 K. Additionally, iodine doping led to an enhancement in the average zT values between 450 and 550 K. Therefore, electron doping in p-type materials presents itself as a viable strategy for shifting the operating temperature of a thermoelectric device from high to medium temperature. We successfully fabricated a thermoelectric generator comprising 6 pairs of p-leg Cu2Se0.96Te0.02I0.02/Cu2O composites and n-leg InSb0.94Bi0.06. This TEG achieved impressive results, including a maximum output voltage, power output, power density, and efficiency of 0.115 V, 10.6 µW, 35.1 µW cm-2, and 1.74% at a temperature difference (ΔT) of 120 K.

3.
ACS Appl Mater Interfaces ; 15(40): 47058-47069, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37772960

ABSTRACT

Mg3Sb2-based Zintl compounds have garnered recent attention as promising materials for thermoelectric applications due to their low thermal conductivity and high zT values as n-type materials. However, the zT values of p-type materials are lower compared to their n-type counterparts. Through a straightforward process involving cold pressing and evacuating-and-encapsulating sintering, we have successfully synthesized a variety of p-type Mg3-xZnxSb2/Sb composites by adding the ZnSb-4%Sb composite into the Mg3Sb2 host material. Structural analyses have provided insights into the role of the ZnSb-4%Sb composite, demonstrating its significance in Zn doping on the Mg sites and Sb acting as an additive in the composite. The introduction of Zn on the Mg tetrahedral sites enhances the concentration of carriers, while the presence of highly conductive Sb grains facilitates the movement of charge carriers between adjacent Mg3-xZnxSb2 grains, thereby promoting mobility. Consequently, the electrical resistivity of the Mg3-xZnxSb2/Sb composites decreases as the Zn content increases. At 710 K, the Mg1.91Zn1.09Sb2/Sb composite exhibits the lowest resistivity, measuring 5.1 mΩ-cm, which is 46 times lower than that of the Mg3Sb2 host. Furthermore, the zT value of the Mg3-xZnxSb2/Sb composites increases with higher Zn content (x), benefiting from a combination of an improved power factor and reduced thermal conductivity. Significantly, our straightforward fabrication process enables us to achieve a maximum zT value of 0.58 at 710 K for the Mg1.91Zn1.09Sb2/Sb composite. This achievement can primarily be attributed to the 8-fold enhancement in power factor compared to the Mg3Sb2 host.

4.
ACS Appl Mater Interfaces ; 13(36): 42977-42990, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34467759

ABSTRACT

Thermoelectric materials capable of converting waste heat energy into electrical energy are enchanting for applications in wearable electronics and sensors by harvesting heat energy of the human body. Organic conducting polymers offer promise of thermoelectric materials for next-generation power sources of wearable devices due to their low cost in preparation, easy processing, low toxicity, low thermal conductivity, mechanical flexibility, light weight, and large area application. Generally, the pristine PEDOT:PSS film has low electrical conductivity, small Seebeck coefficient, and low thermal conductivity. The thermoelectric power factors of conducting polymers of p-type PEDOT:PSS films are considerably improved via synergistic effect by using ethylene glycol and reductants of EG/NaBH4 or EG/NaHCO3. As such, the charge carrier concentration of PEDOT:PSS films is tuned. The synergistic effect might lead to enhanced variation of density of states at the Fermi level and hence enhanced Seebeck coefficient. The resulting PEDOT:PSS films were characterized by atomic force microscopy (AFM), Raman spectroscopy, and XPS spectroscopy. The electrical conductivity and Seebeck coefficient were measured between 325 and 450 K. The carrier concentration and mobility were obtained by Hall measurements. The pristine thin film treated with 0.05 M EG/NaHCO3 solution exhibits the highest power factor of 183 µW m-1 K-2 at 450 K among these two series of films due to its significant enhanced Seebeck coefficient of 48 µV/K. The maximum output power of 121.08 nW is attained at the output voltage of 6.98 mV and the output current of 17.45 µA. The corresponding maximum power density is 98 µW/cm2 for a power generation device made of four pairs of p-leg (EG/NaHCO3 post-treated PEDOT:PSS) and n-leg (Cu0.6Ni0.4) on the polyamide substrate with the size of 4 mm × 20 mm for each leg.

SELECTION OF CITATIONS
SEARCH DETAIL
...