Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(9): 104916, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36148430

ABSTRACT

Food waste is an abundant and inexpensive resource for the production of renewable fuels. Biocrude yields obtained from hydrothermal liquefaction (HTL) of food waste can be boosted using hydroxyapatite (HAP) as an inexpensive and abundant catalyst. Combining HAP with an inexpensive homogeneous base increased biocrude yield from 14 ± 1 to 37 ± 3%, resulting in the recovery of 49 ± 2% of the energy contained in the food waste feed. Detailed product analysis revealed the importance of fatty-acid oligomerization during biocrude formation, highlighting the role of acid-base catalysts in promoting condensation reactions. Economic and environmental analysis found that the new technology has the potential to reduce US greenhouse gas emissions by 2.6% while producing renewable diesel with a minimum fuel selling price of $1.06/GGE. HAP can play a role in transforming food waste from a liability to a renewable fuel.

2.
ACS Omega ; 4(2): 2981-2988, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459523

ABSTRACT

A catalytic rocket stove was developed to reduce emissions and improve efficiency compared to open cooking fires or traditional semienclosed cookstoves, called poyos, typical of rural Guatemala. Traditional stoves often emit particulate matter and carbon monoxide at sufficient levels to cause respiratory illnesses and other health problems. Using focus group results, the stove was tailored to the needs of Guatemalan cooks. Field trial participants were provided with stove training to ensure that stoves were operated correctly. Somewhat surprisingly, the field trial demonstrated a high level of user acceptance in rural Guatemala, where users cooked 93% of the time with the catalytic stove despite having to change some cooking practices. In the field trial, the stove reduced emissions by as much as 68% and improved fuel efficiency by as much as 61% during real-world cooking events relative to the traditional poyo. An additional qualitative portion of the field study identified strengths and weaknesses of the stove that are being addressed as part of an iterative design process.

3.
Appl Energy ; 235: 369-378, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-31130767

ABSTRACT

Approximately three billion people cook with solid fuels, mostly wood, on open fires or rudimentary stoves. These traditional cooking methods produce particulate matter and carbon monoxide known to cause significant respiratory health problems, especially among women and children, who often have the highest exposure. In this work, an inexpensive potassium-based catalyst was incorporated in a chimneyless biomass cookstove to reduce harmful emissions through catalytic oxidation. Potassium titanate was identified as an effective and stable oxidation catalyst capable of oxidizing particulate matter and carbon monoxide. Using a cordierite monolith to incorporate potassium titanate within a bespoke, rocket-style, improved cookstove led to a 36% reduction in particulate matter emissions relative to a baseline stove with a blank monolith and a 26% reduction relative to a stove with no monolith. Additionally, the catalytic stove reduced particulate matter emissions by 82%, reduced carbon monoxide emissions by 70%, and improved efficiency by 100% compared to a carefully tended, three-stone fire. Potassium titanate was also shown to oxidize carbon monoxide at temperatures as low as 500 °C, or as low as 300 °C when doped with copper or cobalt.

4.
ChemSusChem ; 9(11): 1322-8, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27125341

ABSTRACT

At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism.


Subject(s)
Biomass , Inorganic Chemicals/chemistry , Aerosols , Cellulose/chemistry , Particle Size , Temperature , Volatilization
5.
Sci Rep ; 5: 11238, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26057818

ABSTRACT

The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500-600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.


Subject(s)
Cellulose/chemistry , Crystallization , Hot Temperature
6.
Lab Chip ; 15(2): 440-7, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25387003

ABSTRACT

Current research of complex chemical systems, including biomass pyrolysis, petroleum refining, and wastewater remediation requires analysis of large analyte mixtures (>100 compounds). Quantification of each carbon-containing analyte by existing methods (flame ionization detection) requires extensive identification and calibration. In this work, we describe an integrated microreactor system called the Quantitative Carbon Detector (QCD) for use with current gas chromatography techniques for calibration-free quantitation of analyte mixtures. Combined heating, catalytic combustion, methanation and gas co-reactant mixing within a single modular reactor fully converts all analytes to methane (>99.9%) within a thermodynamic operable regime. Residence time distribution of the QCD reveals negligible loss in chromatographic resolution consistent with fine separation of complex mixtures including cellulose pyrolysis products.

7.
ChemSusChem ; 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24678023

ABSTRACT

Fast pyrolysis of woody biomass is a promising process capable of producing renewable transportation fuels to replace gasoline, diesel, and chemicals currently derived from nonrenewable sources. However, biomass pyrolysis is not yet economically viable and requires significant optimization before it can contribute to the existing oil-based transportation system. One method of optimization uses detailed kinetic models for predicting the products of biomass fast pyrolysis, which serve as the basis for the design of pyrolysis reactors capable of producing the highest value products. The goal of this work is to improve upon current pyrolysis models, usually derived from experiments with low heating rates and temperatures, by developing models that account for both transport and pyrolysis decomposition kinetics at high heating rates and high temperatures (>400 °C). A new experimental technique is proposed herein: spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles (STR-DRiSP), which is capable of measuring biomass composition during fast pyrolysis with high spatial (10 µm) and temporal (1 ms) resolution. Compositional data were compared with a comprehensive 2D single-particle model, which incorporated a multistep, semiglobal reaction mechanism, prescribed particle shrinkage, and thermophysical properties that varied with temperature, composition, and orientation. The STR-DRiSP technique can be used to determine the transport-limited kinetic parameters of biomass decomposition for a wide variety of biomass feedstocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...