Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302970, 2024.
Article in English | MEDLINE | ID: mdl-38728244

ABSTRACT

Hematopoietic stem cell transplantation is a common life-saving treatment for hematologic malignancies, though can lead to long-term functional impairment, fatigue, muscle atrophy, with decreased quality of life. Although traditional exercise has helped reduce these effects, it is inconsistently recommended and infrequently maintained, and most patients remain sedentary during and after treatment. There is need for alternative rehabilitation strategies, like neuromuscular electrical stimulation, that may be more amenable to the capabilities of hematopoietic stem cell transplant recipients. Patients receiving autologous HCT are being enroled in a randomized controlled trial with 1:1 (neuromuscular electrical stimulation:sham) design stratified by diagnosis and sex. Physical function, body composition, quality of life, and fatigue are assessed prior to hematopoietic stem cell transplant (prior to initiating preparatory treatment) and 24±5 days post hematopoietic stem cell transplant (Follow-up 1); physical function and quality of life are also assessed 6-months post hematopoietic stem cell transplant (Follow-up 2). The primary outcome is between-group difference in the 6-minute walk test change scores (Follow-up 1-Pre-transplant; final enrolment goal N = 23/group). We hypothesize that 1) neuromuscular electrical stimulation will attenuate hematopoietic stem cell transplant-induced adverse effects on physical function, muscle mass, quality of life, and fatigue compared to sham at Follow-up 1, and 2) Pre-transplant physical function will significantly predict fatigue and quality of life at Follow-up 2. We will also describe feasibility and acceptability of neuromuscular electrical stimulation during hematopoietic stem cell transplant. This proposal will improve rehabilitative patient care and quality of life by determining efficacy and feasibility of a currently underutilized therapeutic strategy aimed at maintaining daily function and reducing the impact of a potent and widely used cancer treatment. This trial is registered with clinicaltrials.gov (NCT04364256).


Subject(s)
Electric Stimulation Therapy , Hematopoietic Stem Cell Transplantation , Quality of Life , Humans , Hematopoietic Stem Cell Transplantation/methods , Electric Stimulation Therapy/methods , Male , Female , Adult , Electric Stimulation/methods , Fatigue/therapy , Middle Aged , Hematologic Neoplasms/therapy , Transplantation, Autologous , Body Composition
2.
Growth Horm IGF Res ; 71: 101544, 2023 08.
Article in English | MEDLINE | ID: mdl-37295336

ABSTRACT

OBJECTIVE: Traumatic brain injury (TBI), a common cause of adult growth hormone deficiency (AGHD), affects 20% of Veterans returning from Iraq and Afghanistan (OEF/OIF/OND). Growth hormone replacement therapy (GHRT) improves quality of life (QoL) in AGHD but remains unexplored in this population. This pilot, observational study investigates the feasibility and efficacy of GHRT in AGHD following TBI. DESIGN: In this 6-month study of combat Veterans with AGHD and TBI starting GHRT (N = 7), feasibility (completion rate and rhGH adherence) and efficacy (improvements in self-reported QoL) of GHRT were measured (primary outcomes). Secondary outcomes included body composition, physical and cognitive function, psychological and somatic symptoms, physical activity, IGF-1 levels and safety parameters. It was hypothesized that participants would adhere to GHRT and that QoL would significantly improve after six months. RESULTS: Five subjects (71%) completed all study visits. All patients administered daily rhGH injections, 6 (86%) of whom consistently administered the clinically-prescribed dose. While QoL demonstrated numeric improvement, this change did not reach statistical significance (p = 0.17). Significant improvements were observed in total lean mass (p = 0.02), latissimus dorsi strength (p = 0.05), verbal learning (Trial 1, p = 0.02; Trial 5, p = 0.03), attention (p = 0.02), short-term memory (p = 0.04), and post-traumatic stress disorder (PTSD) symptoms (p = 0.03). Body weight (p = 0.02) and total fat mass (p = 0.03) increased significantly. CONCLUSION: GHRT is a feasible and well-tolerated intervention for U.S. Veterans with TBI-related AGHD. It improved key areas impacted by AGHD and symptoms of PTSD. Larger, placebo-controlled studies testing the efficacy and safety of this intervention in this population are warranted.


Subject(s)
Brain Injuries, Traumatic , Dwarfism, Pituitary , Human Growth Hormone , Adult , Humans , Growth Hormone , Quality of Life , Pilot Projects , Dwarfism, Pituitary/drug therapy , Brain Injuries, Traumatic/drug therapy , Hormone Replacement Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...