Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38102301

ABSTRACT

BACKGROUND: Diesel exhaust (DE) exposures pose concerns for serious health effects, including asthma and lung cancer, in California communities burdened by multiple stressors. OBJECTIVE: To evaluate DE exposures in disproportionately impacted communities using biomonitoring and compare results for adults and children within and between families. METHODS: We recruited 40 families in the San Francisco East Bay area. Two metabolites of 1-nitropyrene (1-NP), a marker for DE exposures, were measured in urine samples from parent-child pairs. For 25 families, we collected single-day spot urine samples during two sampling rounds separated by an average of four months. For the 15 other families, we collected daily spot urine samples over four consecutive days during the two sampling rounds. We also measured 1-NP in household dust and indoor air. Associations between urinary metabolite levels and participant demographics, season, and 1-NP levels in dust and air were evaluated. RESULTS: At least one 1-NP metabolite was present in 96.6% of the urine samples. Detection frequencies for 1-NP in dust and indoor air were 97% and 74%, respectively. Results from random effect models indicated that levels of the 1-NP metabolite 6-hydroxy-1-nitropyrene (6-OHNP) were significantly higher in parents compared with their children (p-value = 0.005). Urinary 1-NP metabolite levels were generally higher during the fall and winter months. Within-subject variability was higher than between-subject variability (~60% of total variance versus ~40%, respectively), indicating high short-term temporal variability. IMPACT: Biomonitoring, coupled with air monitoring, improves understanding of hyperlocal air pollution impacts. Results from these studies will inform the design of effective exposure mitigation strategies in disproportionately affected communities.

2.
Ann Work Expo Health ; 66(8): 985-997, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35652799

ABSTRACT

Wildland firefighters (WLFFs) are exposed to a mixture of chemicals found in wildland fire smoke and emissions from nonwildland-fuel smoke sources such as diesel. We investigated compositional differences in exposure to particulate matter and explored differences in ventilation rate and potential inhaled dose relative to the work tasks of WLFFs. Repeated measures on ten professional and two volunteer firefighters were collected on prescribed burn and nonburn days. Personal monitoring consisted of real-time and gravimetric fine particulate matter (PM2.5), carbon monoxide (CO), and accelerometer measurements to estimate ventilation rate and potential dose of PM2.5. The fine particulate matter was analyzed for levoglucosan (LG) and light absorbing carbon as a surrogate for black carbon (BC). Breathing zone personal exposure concentrations of PM2.5, LG, BC, and CO were higher on burn days (P < 0.05). Differences in exposure concentrations were observed between burn day tasks (P < 0.05) with firefighters managing fire boundaries (holders) being exposed to higher CO and LG concentrations and less BC concentrations than those conducting lighting (lighters). While no statistical difference in PM2.5 exposure measures was observed between the two tasks, holders in the study tended to be exposed to higher PM2.5 concentrations (~1.4×), while lighters tended to have more inhaled amounts of PM2.5 (~1.3×). Our findings demonstrate possible diversity in the sources of particulate matter exposure at the fireline and suggest the potential importance of using dose as a metric of inhalation exposure in occupational or other settings.


Subject(s)
Firefighters , Occupational Exposure , Carbon Monoxide/analysis , Humans , Occupational Exposure/analysis , Particulate Matter , Pulmonary Ventilation , Smoke
3.
Ann Work Expo Health ; 62(3): 339-350, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29300809

ABSTRACT

We investigated the viability of particle bound 1-nitropyrene (1-NP) air concentration measurements as a surrogate of diesel exhaust (DE) exposure, as compared with industry-standard elemental carbon (EC) and total carbon (TC) measurements. Personal exposures are reported for 18 employees at a large underground metal mine during four different monitoring campaigns. Full-shift personal air exposure sampling was conducted using a Mine Safety and Health Administration (MSHA) compliant diesel particulate matter (DPM) impactor cassette downstream of a GS-1 cyclone pre-selector. Each DPM filter element was analyzed for EC and organic carbon (OC) using NIOSH Method 5040. After EC and OC analysis, the remaining portion of each DPM filter was analyzed for 1-NP using liquid chromatography tandem mass spectrometry (LC/MS/MS). We observed high correlations between the quantiles of 1-NP and EC exposures across 10 different work shift task groups (r = 0.87 to 0.96), and a linear relationship with a slope between 6.0 to 6.9 pg 1-NP per µg EC. However, correlation between 1-NP and EC was weak (r =0.34) for the 91 individual sample pairs due to low EC concentrations and possible heterogeneity of DE composition. While both 1-NP and EC differentiated between high and low exposure groups categorized by job location, measurements of 1-NP, but not EC further differentiated between specific job activities. Repeated measurements on individual subjects verified the relationship between 1-NP and EC and demonstrated substantial within-subject variability in exposure. The detection limit of TC air concentration ranged between 18 and 28 µg m-3 and was limited by OC contamination of the quartz filters in the MSHA compliant DPM samplers.


Subject(s)
Environmental Monitoring/methods , Mining , Occupational Exposure/analysis , Pyrenes/analysis , Vehicle Emissions/analysis , Adult , Carbon/analysis , Female , Humans , Male , Middle Aged , National Institute for Occupational Safety and Health, U.S. , Particulate Matter/analysis , Tandem Mass Spectrometry , United States
4.
Sens Actuators B Chem ; 275: 300-305, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-37576435

ABSTRACT

In this work, we present an ultra-low-cost smartphone device for in situ quantification of OP poisoning severity. The performance of the lens-less smartphone spectrum apparatus (LeSSA) is evaluated using standard human Interleukin-6 (IL-6) immunoassay kits. Upon dose-response curve fitting, LeSSA demonstrates an accuracy of 99.5%. The limit of detection (LOD) of LeSSA was evaluated through comparison of 6.4 pg/ml with standard laboratory grade UV-vis spectrophotometer at 5.5 pg/ml. Evaluating the capacity of LeSSA in spike solution by combining plasma cholinesterase (PChE) and human plasma shows consistency at agreement of 97.6% between LeSSA and the laboratory instrument. For application demonstration, the activity of PChE for 24 agricultural workers' plasma samples was measured with LeSSA, showing exceptional agreement (r2 = 0.92) with the laboratory instrument reference. In addition to near laboratory grade accuracy, the total manufacturing cost of LeSSA is only $20 USD highlighting it's affordability. With LeSSA, clinicians can evaluate OP poisoning severity without the need to transport patient samples to facilities at far distances. Utilizing LeSSA, immediate results can be used for administration of appropriate treatment.

5.
Toxicol Sci ; 154(2): 267-277, 2016 12.
Article in English | MEDLINE | ID: mdl-27621283

ABSTRACT

Salmon exposed to waterborne metals can experience olfactory impairment leading to disrupted chemosensation. In the current study, we investigated the effects of cadmium (Cd) on salmon olfactory function by modeling an exposure scenario where juvenile salmon transiently migrate through a polluted waterway. Coho were exposed to environmentally relevant concentrations of waterborne Cd (2 and 30 µg/L) for 48 h and (0.3 and 2 µg/L) for 16 days, followed by a 16-day depuration associated with outmigration. Cadmium exposures inhibited behavioral responses towards L-cysteine and conspecific odorants, with effects persisting following the depuration. Behavioral alterations following the 30 µg/L exposure were associated with increased olfactory epithelial gene expression of metallothionein (mt1a) and heme oxygenase (hmox1); reduced expression of olfactory signal transduction (OST) molecules; and reduced expression of mRNAs encoding major coho odorant receptors (ORs). Salmon OR array analysis indicated that Cd preferentially impacted expression of OST and OR markers for ciliated olfactory sensory neurons (OSNs) relative to microvillus OSNs, suggesting a differential sensitivity of these two major OSN populations. Behavioral alterations on exposure to 0.3 and 2 µg/L Cd were associated with increased mt1a, but not with major histological or OR molecular changes, likely indicating disrupted OST as a major mechanism underlying the behavioral dysfunction at the low-level Cd exposures. Laser-ablation mass spectrometry analysis revealed that the OSN injury and behavioral dysfunction was associated with significant Cd bioaccumulation within the olfactory sensory epithelium. In summary, low-level Cd exposures associated with polluted waterways can induce differential and persistent olfactory dysfunction in juvenile coho salmon.


Subject(s)
Behavior, Animal/drug effects , Cadmium Chloride/toxicity , Fish Proteins/metabolism , Odorants , Olfactory Mucosa/drug effects , Olfactory Perception/drug effects , Oncorhynchus kisutch/metabolism , Receptors, Odorant/metabolism , Smell/drug effects , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Fish Proteins/genetics , Gene Expression Regulation , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Olfactory Mucosa/metabolism , Oncorhynchus kisutch/genetics , Oncorhynchus kisutch/growth & development , Receptors, Odorant/genetics , Signal Transduction/drug effects , Time Factors
6.
Air Qual Atmos Health ; 8(5): 507-519, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26539254

ABSTRACT

Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...