Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol ; 277(6): H2321-32, 1999 12.
Article in English | MEDLINE | ID: mdl-10600852

ABSTRACT

Cardiac hypothermia alters contractility and intracellular Ca2+ concentration ([Ca2+]i) homeostasis. We examined how left ventricular pressure (LVP) is altered as a function of cytosolic [Ca2+]i over a range of extracellular CaCl2 concentration ([CaCl2]e) during perfusion of isolated, paced guinea pig hearts at 37 degrees C, 27 degrees C, and 17 degrees C. Transmural LV phasic [Ca2+] was measured using the Ca2+ indicator indo 1 and calibrated (in nM) after correction was made for autofluorescence, temperature, and noncytosolic Ca2+. Noncytosolic [Ca2+]i, cytosolic diastolic and systolic [Ca2+]i, phasic [Ca2+]i, and systolic Ca2+ released per beat (area Ca2+) were plotted as a function of 0.3-4.5 mM [CaCl2]e, and indexes of contractility [LVP, maximal rates of LVP development (+dLVP/dt) and relaxation (-dLVP/dt), and the integral of the LVP curve per beat (LVParea)] were plotted as a function of [Ca2+]i. Hypothermia increased systolic [Ca2+]i and slightly changed systolic LVP but increased diastolic LVP and [Ca2+]i. The relationship of diastolic and noncytosolic [Ca2+] to [CaCl2]e was shifted upward at 17 degrees C and 27 degrees C, whereas that of phasic [Ca2+]) to [CaCl2]e was shifted upward at 17 degrees C but not at 27 degrees C. The relationships of phasic [Ca2+]i to developed LVP, +dLVP/dt, and LVP(area) were progressively reduced by hypothermia so that maximal Ca2+-activated LVP decreased and hearts were desensitized to Ca2+. Thus mild hypothermia modestly increases diastolic and noncytosolic Ca2+ with little effect on systolic Ca2+ or released (area) Ca2+, whereas moderate hypothermia markedly increases diastolic, noncytosolic, peak systolic, and released Ca2+ and results in reduced maximal Ca2+-activated LVP and myocardial sensitivity to systolic Ca2+.


Subject(s)
Calcium/metabolism , Heart/physiology , Hypothermia, Induced , Animals , Calcium Chloride/pharmacology , Calibration , Coronary Circulation , Cytosol/metabolism , Diastole , Fluorescent Dyes , Guinea Pigs , Heart/drug effects , Heart Rate , In Vitro Techniques , Indoles , Myocardial Contraction , Perfusion/methods , Temperature , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...