Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Regul Homeost Agents ; 27(2): 329-36, 2013.
Article in English | MEDLINE | ID: mdl-23830384

ABSTRACT

Colchicine (Col) is a microtubule depolymerizing drug, widely used for treatment of familial Mediterranean fever (FMF). Mechanisms by which Col exerts its beneficial effects are not yet completely understood, especially with respect to gene expression in polymorphonuclear neutrophils (PMNs), the main effector cells in acute inflammatory attacks of FMF. This study was, therefore, designed to elucidate possible modulatory effect of Col on expression of inflammation-related genes in circulating PMNs from 16 FMF patients in the remission period and 11 healthy subjects. In vitro effect of Col exposure (1 microg/ml) on expression of 8 selected genes was examined using quantitative real-time RT-PCR. Col up-regulated expression of IL-8 and IL-1beta genes in FMF (13-fold and 2.7-fold, p less than 0.05, respectively) and healthy (3-fold and 6.5-fold, p less than 0.05, respectively) PMNs, and down-regulated caspase-1 in FMF neutrophils (3-fold, p less than 0.05). In FMF PMNs treated with Col mRNAs of IL-8 (51-fold, p less than 0.01) and c-FOS (7-fold, p less than 0.05) transcripts were elevated compared to those from healthy subjects. By contrast, caspase-1 mRNA was decreased in FMF neutrophils compared to healthy cells (1.6-fold, p less than 0.05). Hereby, we provide evidence that, at least in vitro, Col displays pro-inflammatory potential in respect to IL-1beta and IL-8 genes. At the same time, our findings implicate suppression of caspase-1 expression by Col as a potential mechanism for its effects in FMF treatment.


Subject(s)
Colchicine/pharmacology , Familial Mediterranean Fever/drug therapy , Gene Expression Regulation/drug effects , Neutrophils/drug effects , Adolescent , Adult , Caspase 1/genetics , Colchicine/therapeutic use , Familial Mediterranean Fever/immunology , Female , Humans , Interleukin-1beta/genetics , Interleukin-8/genetics , Male , Neutrophils/metabolism
2.
Med Phys ; 39(6Part18): 3823, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28518511

ABSTRACT

PURPOSE: To evaluate the ability of treatment planning algorithm to accurately predict dose delivered at the interface of high density implanted devices. METHODS: A high density (7.6 g/cc) Cobalt-Chromium-Molybdenum hip prosthesis was molded into an epoxy-based cylindrical leg phantom. The phantom was designed to be separated in half to access the prosthesis and to place the TLDs. Using MVCT to image the apparatus, a simple treatment plan was developed using the Philips Pinnacle treatment planning system. Wires were placed in the molded epoxy to allow for accurate definition of measurement sites (TLD positions) along the surface of the prosthesis. Micro-cube TLDs (1 mm3 ) were placed at six measurement locations for which the dose had been calculated by the treatment planning system. An Elekta Synergy linear accelerator was used to deliver a 400 cGy plan to the phantom with 6 MV photons in a single fraction. A total of four 10 cm × 21 cm fields were used at 0, 90, 180, and 270 degree gantry rotations. RESULTS: Initial results indicate that the measured dose is 7-17% lower than the dose calculated by the treatment planning system. Further study using high energy beams are also in progress. CONCLUSIONS: Initial results indicate that the treatment planning system does predict the dose near a high density prosthetic device within 10-15% but underestimates the dose. The results of this study could help in designing treatment plans which would reduce the uncertainty of the dose delivered in the vicinity of prosthetic hip implants and similar devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...