Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Invest Radiol ; 51(10): 624-34, 2016 10.
Article in English | MEDLINE | ID: mdl-27175550

ABSTRACT

Attenuation correction (AC) is an essential step in the positron emission tomography (PET) data reconstruction process to provide accurate and quantitative PET images. The introduction of PET/magnetic resonance (MR) hybrid systems has raised new challenges but also possibilities regarding PET AC. While in PET/computed tomography (CT) imaging, CT images can be converted to attenuation maps, MR images in PET/MR do not provide a direct relation to attenuation. For the AC of patient tissues, new methods have been suggested, for example, based on image segmentation, atlas registration, or ultrashort echo time MR sequences. Another challenge in PET/MR hybrid imaging is AC of hardware components that are placed in the PET/MR field of view, such as the patient table or various radiofrequency (RF) coils covering the body of the patient for MR signal detection. Hardware components can be categorized into 4 different groups: (1) patient table, (2) RF receiver coils, (3) radiation therapy equipment, and (4) PET and MR imaging phantoms. For rigid and stationary objects, such as the patient table and some RF coils like the head/neck coil, predefined CT-based attenuation maps stored on the system can be used for automatic AC. Flexible RF coils are not included into the AC process till now because they can vary in position as well as in shape and are not accurately detectable with the PET/MR system.This work summarizes challenges, established methods, new concepts, and the state of art in hardware component AC in the context of PET/MR hybrid imaging. The work also gives an overview of PET/MR hardware devices, their attenuation properties, and their effect on PET quantification.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Humans , Image Processing, Computer-Assisted/instrumentation , Magnetic Resonance Imaging/instrumentation , Multimodal Imaging/instrumentation , Phantoms, Imaging , Positron-Emission Tomography/instrumentation
2.
Phys Med Biol ; 61(9): 3504-20, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27055014

ABSTRACT

Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for µ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of -11.8% in the top part of the phantom was observable, which was reduced to -1.7% with AC using the µ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of -10.0% and -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested µ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.


Subject(s)
Carcinoma, Bronchogenic/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Positron-Emission Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Sarcoma, Synovial/diagnostic imaging , Adult , Artifacts , Carcinoma, Bronchogenic/radiotherapy , Female , Head/diagnostic imaging , Humans , Male , Middle Aged , Multimodal Imaging/methods , Patient Positioning , Radio Waves , Sarcoma, Synovial/radiotherapy , Whole Body Imaging/methods
3.
J Nucl Med ; 57(1): 78-84, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26471697

ABSTRACT

UNLABELLED: The aim of this study was to systematically assess the quantitative and qualitative impact of including point-spread function (PSF) modeling into the process of iterative PET image reconstruction in integrated PET/MR imaging. METHODS: All measurements were performed on an integrated whole-body PET/MR system. Three substudies were performed: an (18)F-filled Jaszczak phantom was measured, and the impact of including PSF modeling in ordinary Poisson ordered-subset expectation maximization reconstruction on quantitative accuracy and image noise was evaluated for a range of radial phantom positions, iteration numbers, and postreconstruction smoothing settings; 5 representative datasets from a patient population (total n = 20, all oncologic (18)F-FDG PET/MR) were selected, and the impact of PSF on lesion activity concentration and image noise for various iteration numbers and postsmoothing settings was evaluated; and for all 20 patients, the influence of PSF modeling was investigated on visual image quality and number of detected lesions, both assessed by clinical experts. Additionally, the influence on objective metrics such as changes in SUVmean, SUVpeak, SUVmax, and lesion volume was assessed using the manufacturer-recommended reconstruction settings. RESULTS: In the phantom study, PSF modeling significantly improved activity recovery and reduced the image noise at all radial positions. This effect was measurable only at a high number of iterations (>10 iterations, 21 subsets). In the patient study, again, PSF increased the detected activity in the patient's lesions at concurrently reduced image noise. Contrary to the phantom results, the effect was notable already at a lower number of iterations (>1 iteration, 21 subsets). Lastly, for all 20 patients, when PSF and no-PSF reconstructions were compared, an identical number of congruent lesions was found. The overall image quality of the PSF reconstructions was rated better when compared with no-PSF data. The SUVs of the detected lesions with PSF were substantially increased in the range of 6%-75%, 5%-131%, and 5%-148% for SUVmean, SUVpeak, and SUVmax, respectively. A regression analysis showed that the relative increase in SUVmean/peak/max decreases with increasing lesion size, whereas it increases with the distance from the center of the PET field of view. CONCLUSION: In whole-body PET/MR hybrid imaging, PSF-based PET reconstructions can improve activity recovery and image noise, especially at lateral positions of the PET field of view. This has been demonstrated quantitatively in phantom experiments as well as in patient imaging, for which additionally an improvement of image quality could be observed.


Subject(s)
Magnetic Resonance Imaging , Models, Theoretical , Multimodal Imaging , Positron-Emission Tomography , Adult , Aged , Female , Fluorodeoxyglucose F18 , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Neoplasms/diagnostic imaging , Phantoms, Imaging
4.
EJNMMI Phys ; 2(1): 18, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26501819

ABSTRACT

BACKGROUND: In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. METHODS: NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template µ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. RESULTS: Using a CT-based NEMA IQ phantom µ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. CONCLUSION: This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.

5.
J Nucl Med ; 56(7): 1061-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26025957

ABSTRACT

UNLABELLED: In routine whole-body PET/MR hybrid imaging, attenuation correction (AC) is usually performed by segmentation methods based on a Dixon MR sequence providing up to 4 different tissue classes. Because of the lack of bone information with the Dixon-based MR sequence, bone is currently considered as soft tissue. Thus, the aim of this study was to evaluate a novel model-based AC method that considers bone in whole-body PET/MR imaging. METHODS: The new method ("Model") is based on a regular 4-compartment segmentation from a Dixon sequence ("Dixon"). Bone information is added using a model-based bone segmentation algorithm, which includes a set of prealigned MR image and bone mask pairs for each major body bone individually. Model was quantitatively evaluated on 20 patients who underwent whole-body PET/MR imaging. As a standard of reference, CT-based µ-maps were generated for each patient individually by nonrigid registration to the MR images based on PET/CT data. This step allowed for a quantitative comparison of all µ-maps based on a single PET emission raw dataset of the PET/MR system. Volumes of interest were drawn on normal tissue, soft-tissue lesions, and bone lesions; standardized uptake values were quantitatively compared. RESULTS: In soft-tissue regions with background uptake, the average bias of SUVs in background volumes of interest was 2.4% ± 2.5% and 2.7% ± 2.7% for Dixon and Model, respectively, compared with CT-based AC. For bony tissue, the -25.5% ± 7.9% underestimation observed with Dixon was reduced to -4.9% ± 6.7% with Model. In bone lesions, the average underestimation was -7.4% ± 5.3% and -2.9% ± 5.8% for Dixon and Model, respectively. For soft-tissue lesions, the biases were 5.1% ± 5.1% for Dixon and 5.2% ± 5.2% for Model. CONCLUSION: The novel MR-based AC method for whole-body PET/MR imaging, combining Dixon-based soft-tissue segmentation and model-based bone estimation, improves PET quantification in whole-body hybrid PET/MR imaging, especially in bony tissue and nearby soft tissue.


Subject(s)
Bone and Bones/diagnostic imaging , Magnetic Resonance Imaging , Multimodal Imaging , Positron-Emission Tomography , Whole Body Imaging , Adult , Aged , Aged, 80 and over , Algorithms , Bone and Bones/pathology , Female , Fluorodeoxyglucose F18/chemistry , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Radiopharmaceuticals/chemistry , Tomography, X-Ray Computed
6.
J Nucl Med ; 55(8): 1361-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25006216

ABSTRACT

UNLABELLED: With the replacement of ionizing CT by MR imaging, integrated PET/MR in selected clinical applications may reduce the overall patient radiation dose when compared with PET/CT. Further potential for radiotracer dose reduction, while maintaining PET image quality (IQ) in integrated PET/MR, may be achieved by increasing the PET acquisition duration to match the longer time needed for MR data acquisition. To systematically verify this hypothesis under controlled conditions, this dose-reduction study was performed using a standardized phantom following the National Electrical Manufacturers Association (NEMA) IQ protocol. METHODS: All measurements were performed on an integrated PET/MR whole-body hybrid system. The NEMA IQ phantom was filled with water and a total activity of 50.35 MBq of (18)F-FDG. The sphere-to-background activity ratio was 8:1. Multiple PET data blocks of 20-min acquisition time were acquired in list-mode format and were started periodically at multiples of the (18)F-FDG half-lives. Different sinograms (2, 4, 8, and 16 min in duration) were reconstructed. Attenuation correction of the filled NEMA phantom was performed using a CT-based attenuation map template. The attenuation-corrected PET images were then quantitatively evaluated following the NEMA IQ protocol, investigating contrast recovery, background variability, and signal-to-noise ratio. Image groups with half the activity and twice the acquisition time were evaluated. For better statistics, the experiment was repeated 3 times. RESULTS: Contrast recovery, background variability, and signal-to-noise ratio remained almost constant over 3 half-life periods when the decreasing radiotracer activity (100%, 50%, 25%, and 12.5%) was compensated by increasing acquisition time (2, 4, 8, and 16 min). The variation of contrast recovery over 3 half-life periods was small (-6% to +7%), with a mean variation of 2%, compared with the reference setting (100%, 2 min). The signal-to-noise ratio of the hot spheres showed only minor variations over 3 half-life periods (5%). Image readers could not distinguish subjective IQ between the different PET acquisition setups. CONCLUSION: An approach to reduce the injected radiotracer activity in integrated PET/MR imaging, while maintaining PET IQ, was presented and verified under idealized experimental conditions. This experiment may serve as a basis for further clinical PET/MR studies using reduced radiotracer dose as compared with conventional PET/CT studies.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Radiation Dosage , Humans , Image Processing, Computer-Assisted , Radioactive Tracers
7.
Med Phys ; 41(7): 072505, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24989408

ABSTRACT

PURPOSE: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning. In this study, prototype RT positioning devices intended for PET/MR hybrid imaging are introduced and tested toward PET/MR compatibility and image quality. METHODS: A prototype flat RT table overlay and two radiofrequency (RF) coil holders that each fix one flexible body matrix RF coil for RT head/neck imaging have been evaluated within this study. MR image quality with the RT head setup was compared to the actual PET/MR setup with a dedicated head RF coil. PET photon attenuation and CT-based attenuation correction (AC) of the hardware components has been quantitatively evaluated by phantom scans. Clinical application of the new RT setup in PET/MR imaging was evaluated in anin vivo study. RESULTS: The RT table overlay and RF coil holders are fully PET/MR compatible. MR phantom and volunteer imaging with the RT head setup revealed high image quality, comparable to images acquired with the dedicated PET/MR head RF coil, albeit with 25% reduced SNR. Repositioning accuracy of the RF coil holders was below 1 mm. PET photon attenuation of the RT table overlay was calculated to be 3.8% and 13.8% for the RF coil holders. With CT-based AC of the devices, the underestimation error was reduced to 0.6% and 0.8%, respectively. Comparable results were found within the patient study. CONCLUSIONS: The newly designed RT devices for hybrid PET/MR imaging are PET and MR compatible. The mechanically rigid design and the reproducible positioning allow for straightforward CT-based AC. The systematic evaluation within this study provides the technical basis for the clinical integration of PET/MR hybrid imaging into RT treatment planning.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Multimodal Imaging/instrumentation , Patient Positioning/instrumentation , Positron-Emission Tomography/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy, Image-Guided/instrumentation , Adult , Aged , Equipment Design , Head/anatomy & histology , Head/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Male , Multimodal Imaging/methods , Neck/anatomy & histology , Neck/diagnostic imaging , Phantoms, Imaging , Positron-Emission Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods
8.
Med Phys ; 40(8): 082301, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23927344

ABSTRACT

PURPOSE: Flexible radiofrequency (RF) surface coils used in simultaneous PET/MR imaging are currently disregarded in PET attenuation correction (AC) since their position and individual geometry are unknown in whole-body patient scans. The attenuation of PET emission data due to the presence of RF surface coils has been investigated by several research groups but so far no automatic approach for the incorporation of RF surface coils into PET AC has been described. In this work, an algorithm is presented and evaluated which automatically determines the position of multiple RF surface coils and corrects for their attenuation of the PET emission data. METHODS: The presented algorithm nonrigidly registers pre-acquired CT-based three-dimensional attenuation templates of RF surface coils into attenuation maps used for PET AC. Transformation parameters are obtained by nonrigid B-spline landmark registration of marker positions in the CT-based attenuation templates of the RF surface coils to marker positions in the current MR images of the patient. The use of different marker patterns enables the registration algorithm to distinguish multiple partly overlapping RF surface coils. To evaluate the registration algorithm, two different PET emission scans of a NEMA standard body phantom with six active lesions and of a large rectangular body phantom were performed on an integrated whole-body PET/MR scanner. The phantoms were scanned with and without one (NEMA phantom scan) or three (large body phantom scan) flexible six-channel RF surface coils placed on top. Additionally, the accuracy and performance of the algorithm were evaluated on volunteer scans (n=5) and on a patient scan using a typical clinical setup of three RF surface coils. RESULTS: Overall loss of true counts due to the presence of the RF surface coils was 5.1% for the NEMA phantom, 3.6% for the large body phantom, and 2.1% for the patient scan. Considerable local underestimation of measured activity concentration up to 15.4% in the top part of the phantoms and 15.5% for a lesion near the body surface of the patient was measured close to the high attenuating hardware components of the RF coils. The attenuation maps generated by the registration algorithm reduced the quantification errors due to the RF surface coils to values ranging from -3.9% to 4.3%. Concerning the volunteer examinations, the attenuation templates of the three RF surface coils were registered to their correct positions with an overall accuracy of about 3 mm. CONCLUSIONS: The presence of flexible RF surface coils leads to considerable local errors in the simultaneously measured PET activity concentration up to 15.5% especially in regions close to the coils. The presented automatic algorithm accurately and reliably reduces the PET quantification errors caused by multiple partly overlapping flexible RF surface coils to values of 4.3% or better.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Multimodal Imaging/instrumentation , Positron-Emission Tomography/instrumentation , Radio Waves , Adult , Algorithms , Automation , Female , Humans , Image Processing, Computer-Assisted , Male , Phantoms, Imaging
9.
Med Phys ; 40(2): 024301, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23387782

ABSTRACT

PURPOSE: With the recent introduction of integrated whole-body hybrid positron emission tomography/magnetic resonance (PET/MR) scanners, simultaneous PET/MR breast imaging appears to be a potentially attractive new clinical application. In this study, the technical groundwork toward performing simultaneous PET/MR breast imaging was developed and systematically evaluated in phantom experiments and breast cancer patient hybrid imaging. METHODS: Measurements were performed on a state-of-the-art whole-body simultaneous PET/MR system (Biograph mMR, Siemens AG, Erlangen, Germany). The PET signal attenuating effects of a MR-only four-channel radiofrequency (RF) breast coil that is present in the PET field-of-view (FoV) during a simultaneous PET/MR data acquisition has been investigated and quantified. For this purpose, a dedicated PET/MR visible breast phantom featuring four modular inserts with various structures (no insert, MR insert, PET insert, and PET/MR insert) was developed. In addition to a systematic evaluation of MR-only image quality, the following phantom scans were performed using (18)F radio tracer: (1) PET emission scan with only the homogeneous breast phantom; (2) PET emission scan additionally with the RF breast coil in the PET FoV. Attenuation correction (AC) of PET data was performed with CT-based three-dimensional (3D) hardware attenuation maps (µ-maps) of the RF coil and breast phantom. Finally, a simultaneous PET/MR breast imaging was performed in two breast cancer patients. RESULTS: The modular breast phantom allowed for systematic evaluation of various MR, PET, and PET/MR image quality parameters. The RF breast coil provided MR images of good image quality, unaffected by PET imaging. The global attenuation of the RF breast coil on the PET emission data was approximately 11%. This hardware attributed PET signal attenuation was successfully corrected by using an appropriate CT-based 3D µ-map of the RF breast coil. Imaging of two breast cancer patients confirmed the successful integration of the RF breast coil into the concept of simultaneous PET/MR breast imaging. CONCLUSIONS: The successful integration of a four-channel RF breast coil with a defined table position together with the CT-based µ-maps provides a technical basis for future clinical PET/MR breast imaging applications.


Subject(s)
Breast/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Radio Waves , Systems Integration , Breast Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Time Factors
10.
Med Phys ; 39(7): 4306-15, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22830764

ABSTRACT

PURPOSE: In simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging, local receiver surface radiofrequency (RF) coils are positioned in the field-of-view (FOV) of the PET detector during PET/MR data acquisition and potentially attenuate the PET signal. For flexible body RF surface coils placed on top of the patient's body, MR-based attenuation correction (AC) is an unsolved problem since the RF coils are not inherently visible in MR images and their individual position in the FOV is patient specific and not known a priori. The aim of this work was to quantify the effect of local body RF coils used in the Biograph mMR hybrid PET/MR system on PET emission data and to present techniques for MR-based position determination of these specific local RF coils. METHODS: Acquisitions of a homogeneous phantom were performed on a whole-body PET/MRI scanner. Two different PET emission scans were performed, with and without the local body matrix RF coil placed on the top of the phantom. For position determination of the coil, two methods were applied. First, cod liver oil capsules were attached to the surface of the coil and second, an ultrashort echo time (UTE) sequence was used. PET images were reconstructed in five different ways: (1) PET reference scan without the coil, (2) PET scan with the coil, but omitting the coil in AC (PET/MR scanning conditions), (3) AC of the coil using a CT scan of the same phantom setup and registration via capsules, (4) same setup as 3, but registration was done using UTE images, neglecting the capsules, and (5) registration using the capsules, but the CT was performed with the coil placed flat on the CT table and the outer regions of the coil were cropped. The activity concentrations were then compared to the reference scan. For clinical evaluation of the concept, the presented methods were also evaluated on a patient. RESULTS: The oil capsules were visible in the MR and CT images and image registration was straightforward. The UTE images show only parts of the coil's plastic housing and image registration was more difficult. The overall loss of true counts due to the presence of the surface coil is 4.7%. However, a spatially dependent analysis shows larger deviation (10%-15% attenuation) of the activity concentration in the top part of the phantom close to the coil. When accounting for the RF coil for PET AC, attenuation due to the RF coil could mostly be corrected. These results of the phantom studies were confirmed by the patient measurements. CONCLUSIONS: Disregarding local coils in PET AC can lead to a bias of the AC PET images that is regional dependent. The closer the analyzed region is located to the coil, the higher the bias. Cod liver oil capsules or the UTE sequence can be used for RF coil position determination. The middle part of the examined RF coil hosting the preamplifiers and electronic components provides the highest attenuating part. Consequently, emphasis should be put on correcting for this portion of the RF coils with the suggested methods.


Subject(s)
Artifacts , Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Patient Positioning/methods , Positron-Emission Tomography/instrumentation , Subtraction Technique/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Positron-Emission Tomography/methods , Reproducibility of Results , Sensitivity and Specificity
11.
Med Phys ; 39(5): 2735-45, 2012 May.
Article in English | MEDLINE | ID: mdl-22559644

ABSTRACT

PURPOSE: With the recent introduction of integrated whole-body hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) scanners, the need for data collection strategies arises that provide time efficient, simultaneous, and easy acquisition of PET and MRI data. One approach is to develop acquisition protocols with continuous table motion. In this work, a reconstruction technique to allow for reconstruction of PET data that were acquired with continuous table motion on an integrated hybrid whole-body PET/MRI scanner is presented and evaluated. METHODS: PET and MRI data of two quality-control phantoms ((68)Ge-Cylinder and Jasczcak phantom), a custom-built large body phantom, and of a clinical patient were acquired on a Biograph mMR 3.0 Tesla whole-body PET/MRI system with continuous table motion and for comparison with the standard multistation acquisition approach. The data were postprocessed and reconstructed offline with custom software to allow for continuous table motion acquisition and analyzed with respect to noise, spatial resolution, and geometric accuracy as well as subjective image impression. RESULTS: It is shown that data acquisition with continuous table motion is equivalent and in some respects, superior to the traditional multistation approach. CONCLUSIONS: Continuous table motion can benefit the new hybrid modality PET/MRI by not being limited to several static bed positions, resulting in a better time efficiency, less continuity artifacts, and a faster and easier acquisition workflow.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Motion , Positron-Emission Tomography/instrumentation , Artifacts , Female , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...