Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 75(2): 224-233, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35388505

ABSTRACT

This study was conducted to evaluate the performance of a screening protocol to detect and isolate mcr-positive Escherichia coli and Salmonella spp. from animal caecal content and meat samples. We used a multicentre approach involving 12 laboratories from nine European countries. All participants applied the same methodology combining a multiplex PCR performed on DNA extracted from a pre-enrichment step, followed by a selective culture step on three commercially available chromogenic agar plates. The test panel was composed of two negative samples and four samples artificially contaminated with E. coli and Salmonella spp. respectively harbouring mcr-1 or mcr-3 and mcr-4 or mcr-5 genes. PCR screening resulted in a specificity of 100% and a sensitivity of 83%. Sensitivity of each agar medium to detect mcr-positive colistin-resistant E. coli or Salmonella spp. strains was 86% for CHROMID® Colistin R, 75% for CHROMagarTM COL-APSE and 70% for COLISTIGRAM. This combined method was effective to detect and isolate most of the E. coli or Salmonella spp. strains harbouring different mcr genes from food-producing animals and food products and might thus be used as a harmonized protocol for the screening of mcr genes in food-producing animals and food products in Europe.


Subject(s)
Escherichia coli , Meat , Salmonella , Agar , Animals , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics , Meat/microbiology , Microbial Sensitivity Tests , Plasmids , Salmonella/isolation & purification
2.
J Microbiol Methods ; 193: 106418, 2022 02.
Article in English | MEDLINE | ID: mdl-35041877

ABSTRACT

The European Food Safety Authority (EFSA) advised to prioritize monitoring carbapenemase producing Enterobacteriaceae (CPE) in food producing animals. Therefore, this study evaluated the performance of different commercially available selective agars for the detection of CPE using spiked pig caecal and turkey meat samples and the proposed EFSA cultivation protocol. Eleven laboratories from nine countries received eight samples (four caecal and four meat samples). For each matrix, three samples contained approximately 100 CFU/g CPE, and one sample lacked CPE. After overnight enrichment in buffered peptone water, broths were spread upon Brilliance™ CRE Agar (1), CHROMID® CARBA (2), CHROMagar™ mSuperCARBA™ (3), Chromatic™ CRE (4), CHROMID® OXA-48 (5) and Chromatic™ OXA-48 (6). From plates with suspected growth, one to three colonies were selected for species identification, confirmation of carbapenem resistance and detection of carbapenemase encoding genes, by methods available at participating laboratories. Of the eleven participating laboratories, seven reported species identification, susceptibility tests and genotyping on isolates from all selective agar plates. Agars 2, 4 and 5 performed best, with 100% sensitivity. For agar 3, a sensitivity of 96% was recorded, while agar 1 and 6 performed with 75% and 43% sensitivity, respectively. More background flora was noticed for turkey meat samples than pig caecal samples. Based on this limited set of samples, most commercially available agars performed adequately. The results indicate, however, that OXA-48-like and non-OXA-48-like producers perform very differently, and one should consider which CPE strains are of interest to culture when choosing agar type.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Agar , Animals , Bacterial Proteins/genetics , Bacteriological Techniques/methods , Enterobacteriaceae Infections/diagnosis , Microbial Sensitivity Tests , Sensitivity and Specificity , Swine , beta-Lactamases/genetics
3.
Microorganisms ; 9(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065518

ABSTRACT

Due to the increasing reports of carbapenemase-producing Enterobacteriaceae (CPE) from livestock in recent years, the European Reference Laboratory for Antimicrobial Resistances (EURL-AR) provided a protocol for their recovery from caecum and meat samples. This procedure exhibited limitations for the detection of CPE with low carbapenem MIC values. Therefore, it was modified by a second, selective enrichment in lysogeny broth with cefotaxime (CTX 1 mg/L) and with meropenem (MEM 0.125 mg/L) at 37 °C under microaerophilic conditions. By Real-time PCR, these enrichments are pre-screened for the most common carbapenemase genes. Another adaptation was the use of in-house prepared MacConkey agar with MEM and MEM+CTX instead of commercial selective agar. According to the EURL-method, we achieved 100% sensitivity and specificity using the in-house media instead of commercial agar, which decreased the sensitivity to ~75%. Comparing the method with and without the second enrichment, no substantial influence on sensitivity and specificity was detected. Nevertheless, this enrichment has simplified the CPE-isolation regarding the accompanying microbiota and the separation of putative colonies. In conclusion, the sensitivity of the method can be increased with slight modifications.

4.
Microorganisms ; 9(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374123

ABSTRACT

Within the German national monitoring of zoonotic agents, antimicrobial resistance determination also targets carbapenemase-producing (CP) Escherichia coli by selective isolation from food and livestock. In this monitoring in 2019, the CP E. coli 19-AB01133 was recovered from pork shoulder. The isolate was assigned to the phylogenetic group B1 and exhibited the multi-locus sequence-type ST5869. Molecular investigations, including whole genome sequencing, of 19-AB01133 revealed that the isolate carried the resistance genes blaVIM-1, blaSHV-5 and blaCMY-13 on a self-transmissible IncA/C2 plasmid. The plasmid was closely related to the previously described VIM-1-encoding plasmid S15FP06257_p from E. coli of pork origin in Belgium. Our results indicate an occasional spread of the blaVIM-1 gene in Enterobacteriaceae of the European pig population. Moreover, the blaVIM-1 located on an IncA/C2 plasmid supports the presumption of a new, probably human source of carbapenemase-producing Enterobacteriaceae (CPE) entering the livestock and food chain sector.

5.
Microorganisms ; 8(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081194

ABSTRACT

Resistance to carbapenems due to carbapenemase-producing Enterobacteriaceae (CPE) is an increasing threat to human health worldwide. In recent years, CPE could be found only sporadically from livestock, but concern rose that livestock might become a reservoir for CPE. In 2019, the first GES carbapenemase-producing Escherichia coli from livestock was detected within the German national monitoring on antimicrobial resistance. The isolate was obtained from pig feces and was phenotypically resistant to meropenem and ertapenem. The isolate harbored three successive blaGES genes encoding for GES-1, GES-5 and GES-5B in an incomplete class-I integron on a 12 kb plasmid (pEC19-AB02908; Acc. No. MT955355). The strain further encoded for virulence-associated genes typical for uropathogenic E. coli, which might hint at an increased pathogenic potential. The isolate produced the third carbapenemase detected from German livestock. The finding underlines the importance CPE monitoring and detailed characterization of new isolates.

6.
Front Microbiol ; 11: 1678, 2020.
Article in English | MEDLINE | ID: mdl-32849351

ABSTRACT

After first detections of carbapenemase-producing Enterobacteriaceae (CPE) in animals, the European Union Reference Laboratory for Antimicrobial Resistance has provided a protocol for the isolation of carbapenemase-producing Escherichia (E.) coli from cecum content and meat. Up to now, only few isolates were recovered using this procedure. In our experience, the choice of the selective agar is important for the efficacy of the method. Currently, the use of the prevailing method fails to detect CPE that exhibit a low resistance against carbapenems. Thus, this study aims to evaluate the suitability of selective media with antibiotic supplements and commercial ChromID® CARBA agar for a reliable CPE detection. For comparative investigations, detection of freeze-dried carbapenemase-resistant bacteria was studied on different batches of the ChromID® CARBA agar as well as on MacConkey agar supplemented with 1 mg/L cefotaxime and 0.125 mg/L meropenem (McC+CTX+MEM). The suitability of the different media was assessed within a time of 25 weeks, starting at least six weeks before expiration of the media. Carbapenem-resistant isolates exhibiting a serine-based hydrolytic resistance mechanism (e.g., bla KPC genes) were consistently detected over 25 weeks on the different media. In contrast, carbapenemase producers with only slightly reduced susceptibility and exhibiting a zinc-catalyzed activity (e.g., bla VIM, bla NDM, and bla IMP) could only be cultivated on long-time expired ChromID® CARBA, but within the whole test period on McC+CTX+MEM. Thus, ChromID® CARBA agar appears to be not suitable for the detection of CPE with slightly increased minimum inhibitory concentrations (MIC) against carbapenems, which have been detected in German livestock and thus, are of main interest in the national monitoring programs. Our data are in concordance with the results of eleven state laboratories that had participated in this study with their ChromID® CARBA batches routinely used for the German CPE monitoring. Based on the determined CPE detection rate, we recommend the use of McC+CTX+MEM for monitoring purposes. This study indicates that the use of ChromID® CARBA agar might lead to an underestimation of the current CPE occurrence in food and livestock samples.

7.
Microorganisms ; 8(6)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32517147

ABSTRACT

Resistance to carbapenems is a severe threat to human health. These last resort antimicrobials are indispensable for the treatment of severe human infections with multidrug-resistant Gram-negative bacteria. In accordance with their increasing medical impact, carbapenemase-producing Enterobacteriaceae (CPE) might be disseminated from colonized humans to non-human reservoirs (i.e., environment, animals, food). In Germany, the occurrence of CPE in livestock and food has been systematically monitored since 2016. In the 2019 monitoring, an OXA-48-producing E. coli (19-AB01443) was recovered from a fecal sample of a fattening pig. Phenotypic resistance was confirmed by broth microdilution and further characterized by PFGE, conjugation, and combined short-/long-read whole genome sequencing. This is the first detection of this resistance determinant in samples from German meat production. Molecular characterization and whole-genome sequencing revealed that the blaOXA-48 gene was located on a common pOXA-48 plasmid-prototype. This plasmid-type seems to be globally distributed among various bacterial species, but it was frequently associated with clinical Klebsiella spp. isolates. Currently, the route of introduction of this plasmid/isolate combination into the German pig production is unknown. We speculate that due to its strong correlation with human isolates a transmission from humans to livestock has occurred.

8.
Int J Food Microbiol ; 321: 108542, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32066036

ABSTRACT

Members of the Bacillus cereus group are common contaminants of vegetables. One potential source of contamination is the application of B. thuringiensis based biopesticides. Although evidence of the presence of biopesticidal strains on food products is scarce, this information is essential for assessing potential risks associated with the application of these biopesticides. In order to contribute to knowledge about the presence of biopesticidal B. thuringiensis strains in foodstuffs, we investigated the occurrence of B. thuringiensis on tomatoes and bell pepper. We analyzed 99 samples of fresh bell pepper for B. cereus group members, while 426 samples of tomatoes were tested by the competent food control laboratories of the federal states in Germany. The isolates recovered from these samples were further characterized in terms of their capability to produce parasporal crystals as well as enterotoxins. A possible correlation between the B. thuringiensis isolates and biopesticidal strains was investigated by multilocus sequence typing (MLST) and whole genome Single Nucleotide Polymorphism (wgSNP) analyses. The prevalence of B. cereus group members was 41% for bell pepper and 28% for tomato samples. Isolates recovered from these samples were dominated by B. thuringiensis (93% and 99%, respectively). All B. thuringiensis isolates carried the enterotoxin genes nheA, hblD and cytK-2. In a subset of 83 B. thuringiensis isolates analyzed by MLST, 99% of the isolates matched the sequence types (ST) 8 and 15, which are also shared by the biopesticidal strains B. thuringiensis kurstaki ABTS-351 and B. thuringiensis aizawai ABTS-1857. Of the 82 isolates assigned to ST 8 or ST 15, a selection of 42 isolates was further characterized by wgSNP analysis. Of these, seven isolates differed from strain ABTS-351 by ≤4 core SNPs and 18 isolates differed from strain ABTS-1857 by ≤2 core SNPs, indicating a relationship of these isolates with the respective biopesticidal strain. These isolates originated from samples with maximum colony counts of 5.3 × 103 cfu/g for bell pepper and 1.0 × 105 cfu/g for tomatoes.


Subject(s)
Bacillus thuringiensis/isolation & purification , Biological Control Agents/analysis , Capsicum/microbiology , Solanum lycopersicum/microbiology , Bacillus cereus/classification , Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Bacillus thuringiensis/classification , Bacillus thuringiensis/genetics , Enterotoxins/genetics , Food Microbiology , Germany , Humans , Multilocus Sequence Typing
SELECTION OF CITATIONS
SEARCH DETAIL
...